Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Acta Mechanica et Automatica

Tytuł artykułu

Effect of continuous damage deactivation on yield and failure surfaces

Autorzy Cegielski, M.  Ganczarski, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This article deals with the modeling of the continuous damage deactivation affected yield surfaces of copper and failure surfaces of mortar, from the viewpoint of continuum damage mechanics. The concept of damage deactivation is adapted to Tresca-Guest and Huber-Mises surfaces and two models are presented: the classical discontinuous one, in which microcracks close instantaneously, and the new continuous one, in which they close gradually. The results for both models are compared and verified in order to achieve the best fitting the experimental data. Detailed quantitative and qualitative analysis of obtained solutions confirms the necessity and correctness of an application of the continuous damage deactivation concept.
Słowa kluczowe
EN damage   damage deactivation   failure  
Wydawca Oficyna Wydawnicza Politechniki Białostockiej
Czasopismo Acta Mechanica et Automatica
Rocznik 2007
Tom Vol. 1, no. 2
Strony 15--18
Opis fizyczny Bibliogr. 17 poz., rys., wykr.
autor Cegielski, M.
autor Ganczarski, A.
  • Institute of Applied Mechanics, Dept. of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków,
1. Broberg H. (1975) Creep damage and rupture, a phenomenological study, PhD Thesis, Chalmers Tekniska Högskola, Göteborg.
2. Dhanasekar M., Page A.W., Kleeman P.W. (1985), The failure of brick masonry under biaxial stresses, in Proc. Instn. Civ. Engrs., Part 2, 295-313.
3. Finnie I., Abo el Ata M.M. (1971), Creep and creep-rupture of copper tubes under multiaxial stress, in Advances in Creep Design, eds. Smith A.J., Nicolson A.M., Willey, New York, 329-352.
4. Foryś P., Ganczarski A. (2002), Modelling of microcrack closure effect, Proc. Int. Symp. Anisotropic Behaviour of Damaged Materials (on CD ROM).
5. Ganczarski A., Barwacz L. (2007), Low cycle fatigue based on unilateral damage evolution, Int. J. Damage Mechanics, Vol. 16, No 2, 159-177.
6. Ganczarski A., Cegielski M. (2007), Efekt ciągłej deaktywacji uszkodzenia, Acta Mechanica et Automatica, Vol. 1, No 1, 35-38.
7. Hansen N.R., Schreyer H.L. (1995), Damage deactivation, Trans. ASME, 62, 450-458.
8. Johson A.E., Henderson J., Mathur V.D. (1956), Combined stress fracture of commercial copper at 250oC, The Engineer, 24, 261-265.
9. Lemaitre J., Chaboche J.-P. (1985), Mécanique des matériaux solides, Bordas, Paris.
10. Lemaitre J. (1992), A course on damage mechanics, Springer-Verlag, Berlin Heidelberg.
11. Litewka A. (1991), Damage and fracture of metals in creep conditions, Thesis of Poznań University of Technology, No 250 (in Polish).
12. Murakami S., Sanomura Y. (1985), Creep and creep damage of copper under multiaxial states of stress, in Plasticity today, eds. Sawczuk A, Bianchi G., Elsevier, London, 535-551.
13. Murakami S., Sanomura Y., Saitoh K. (1986), Formulation of cross-hardening in creep and its effect on the creep damage process of copper, J. Eng. Mat. Techn., 108, 167-173.
14. Page A.W. (1981), The biaxial compressive strength of brick masonry, Proc. Instn. Civ. Engrs., Part 2, 71, 893-906.
15. Page A.W. (1983), The strength of brick masonry under biaxial tension-compression, Int. J. Masonry Constr., 3, 26-31.
16. Rots J.G. (1997), Structural masonry-an experimental-numerical basis for practical design rules, Balkema, Rotterdam.
17. van der Pluijm R. (1999), Discontinuous modelling of strain localisation and failure, PhD Thesis, Delft Univ. Techn.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPB2-0029-0008