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Abstract: This paper deals with a periodic two-layered elastic half-space weakened by an interface penny-shaped crack 
filled with a gas. The study is based on the approximate treatment by using the linear elasticity with microlocal parameters  
in the axisymmetric case. Applying the Hankel integral transforms, we obtain a system of dual integral equations.  
It is reduced to a set of two integral equations which are solved numerically. Some results concerning the variation of the 
internal gas pressure and the stress intensity factors of mode I and mode II are illustrated graphically. 

 
 
 
 

 

1. INTRODUCTION 
 

The mechanical behavior of solids containing gas-  
or liquid-filled cracks was a subject of the investigation  
of many authors. Interest in such problems is stimulated by 
their wide applications in mining engineering, gas- and oil-
producing industries. Zazovskiy (1979a, 1979b) studied the 
possibility of propagation of a plane crack in rocks while  
it is pumped with a fluid or taking into account a filtration 
of the liquid substance into the solid structure. Sulym and 
Yevtushenko (1980) solved a plane problem for a crack 
filled with a compressible barotropic liquid. They 
suggested to simulate the crack’s filler by a constant 
pressure dependent on the crack opening and determined 
from the equation of state of the fluid. Baluyeva and 
Dashevsky (1994, 1995) considered the problems of gas-
filled cracks in an infinite elastic medium. Based on the 
concept of stress intensity factors criteria in fracture 
mechanics they obtained the estimations for crack growth 
while the mass of the gas in the crack monotonically 
increases. A combined thermal and mechanical influence of 
the heat-conducting ideal gas filling a crack on the stress-
and-strain state was studied by Matczyński et al. (1999).  

The present contribution is a sequel to some our 
earlier investigations (Kaczyński and Monastyrskyy, 2004; 
2005) involving the problems for a periodic stratified space 
and an isotropic half-space containing a liquid-filled penny-
shaped crack. It is devoted to examine the integrated effect  
of an ideal gas, filling a penny-shaped interface crack  
in a periodic two-layered semi-infinite medium, on the 
variation of stress intensity factors under the external both 
tensile and compressive load. 

 
 
 
 

2. STATEMENT OF THE PROBLEM 
 

2.1. Description of the problem  
 

Let us consider a periodic stratified half-space,  
in which every repeated unit lamina of thickness l consists 
of two perfectly bonded layers of thicknesses l1 and l2 
(ll = l1+l2) with different Lame’s constants λ1, μ1 and λ2, μ2. 
The direction of the layering is perpendicular to the 
boundary of the body.  

The composite is weakened by a penny-shaped 
interface crack of radius a, which is located on a plane 
parallel to the boundary at the distance h. The crack is filled 
with a fixed amount of gas. 

Let refer the body to an axially symmetric co-ordinate 
system (r, θ, z), introducing it in the manner that the z-axis 
is perpendicular to the layering, directing towards  
the boundary, and the coordinate basic origin coincides 
with the center of the crack (see Fig. 1). So the crack 
occupies the region {(r, θ, z): r ≤ a, 0 ≤θ <2π, z = 0}.  

 

 

Fig. 1. Periodic stratified half-space having a gas-filled crack  
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The body is subjected to a uniform normal pressure p 
applied at infinity and at the boundary. Moreover, the 
surfaces of the crack are under the internal pressure of the 
gas Pgas. Notice that this parameter does not remain 
constant during the interaction and is unknown a priori 
because  
the change of the external load leads to the change  
of the crack’s volume, which consequently induces  
the magnitude of the internal pressure of the gas.  

The problem under study lies in the determination  
of the stress-and-strain state of the composite being 
considered, paying much attention on the distribution  
of stress in the neighbourhood of the defect. Especially,  
the stress intensity factors as the local important parameters 
controlling the fracture instability are of prime interest. 

 
2.2. Governing equations 

 
In the description of the macroscopic behavior  

of solids with a periodic microheterogeneous structure   
Woźniak and Matysiak (1987) developed the homogenized 
theory of linear elasticity with microlocal parameters.  
We base on this approach that leads in the static 
axisymmetric case to the governing equations  
and constitutive relations of certain homogenized model  
of the treated body, given in terms of the unknown  
macro-displacements uz(r, z) and ur(r, z) as follows (Pusz, 
1988):  
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2.3. Boundary conditions 

 
Within the scope of the above homogenized model  

it is convenient to pose the considered problem for the half-
space {(r, θ, z): 0≤ r < ∞, 0 ≤ θ < 2π, – ∞ <z ≤ 0} and the 
layer {(r, θ, z): 0≤ r < ∞, 0 ≤ θ < 2π,  0 <z ≤ h}. Herein-
after we use the superscripts (1) and (2) to refer quantities  
to the half-space and to the layer, respectively (see Fig. 1).  

Following the classical approach based on the 
superposition principle, the problem is separated into two 
parts. For the first trivial part, the uncracked stratified 
medium is assumed to be loaded uniformly at the 
boundaries. Next we pass to the second part involving 
perturbations caused by the gas-filled crack. The boundary 
conditions of this perturbed crack problem can be written 
as  
(a) on the bonding interfacial plane z = 0: 
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(b) on the bounding surface of the semi-infinite medium  
and at infinity: 
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Moreover, in order to find the unknown gas pressure Pgas, 
we use the well-known Mendeleyev–Clapeyron equation 

0gasP V g const= = , (5) 

where V stands for the volume of a gas, which is equal  
to the volume of the crack, and g0 – the constant, depending 
on mass and molar mass of gas and temperature. 
 
3. METHOD OF SOLUTION  
 

To solve the above-mentioned problem, we use  
the similar technique as that developed by Monastyrskyy 
and Kaczyński (2005). Because of the complexity  
of appearing expressions only a brief description of the 
proposed method will be outlined. 

The proper integral representation of stresses and 
displacements within the every domain 1 and 2 can  
be constructed by solving the auxiliary boundary value 
problem. Instead of the boundary conditions (3)1-2 and (3)5-6 
one should pose  
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where Δuz(r), Δur(r) are the unknown jumps of normal and 
shear displacements.  

In dealing with the solution to this problem we use the 
method of the Hankel integral transforms. In this way  
we obtain the representation of displacements and stresses 
within the body via Hankel’s transforms of jumps 
H0 ≡ H0[Δuz(r), ξ] and H1 ≡ H1[Δur(r), ξ], defined by 
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where Jk stands for the Bessel function of the first kind  
of order k.  
 The remaining boundary conditions of the posed 
initial problem (3)1-2 and (3)5-6  then yields the system of 
dual integral equations written in a shortened form as 
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with some regular kernels 1 1 2 2, , ,K K K Kz r z r . 

 Following Ufland (1977) we introduce the following 
representations which identically satisfy (8)3-4: 
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By substituting (9) into (8)1-2 we arrive at the two integral 
equations for auxiliary functions ϕz, ϕr which can  
be reduced to the following form 
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In the above, K1z, K1r, K2z, K2r are known complicated 
regular kernels (their formulae are too lengthy so we do not 
present them here). Furthermore, we confine ourselves to 
the case of different shear modulae of the subsequent layers 
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provided k1 and k2 (k1 < k2) are the real positive of the 
biquadratic in k  
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 In addition to (10), the condition for the unknown 
pressure of the gas Pgas is obtained from (5), using  

the formula  
0
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Thus, the problem at hand reduces to the set of integral 
equations (10) and (13) for the unknown functions ϕz, ϕr 
and scalar parameter Pgas.  

4. ANALYSIS OF RESULTS  
 
4.1. Numerical procedure 
 

Due to the complex structure of equations (10)  
it is unlikely to obtain their solutions in the analytical form. 
For this reason, we apply a certain numerical procedure 
outlined briefly below. 

We find the unknown functions ϕz(r), ϕr(r) in the 
space of continuous functions on the segment [0, a]. As the 
set of polynomials is the full set of functions in this space, 
these functions can be approximated with any, a priori 
given accuracy by polynomials 
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where czn ( 1,n N= ) and crm ( 1,m M= ) stand for the 
coefficients.  
 Substituting expressions (14) for ϕz(r), ϕr(r) into 
integral equations (10) and satisfying them in the set of the 
collocation points (for equation (10)1 at the points 
rn = na / N ( 1,n N= ) and for equation (10)2 at the points 
rm = ma / M ( 1,m M= ), we arrive at a set of non-linear 
algebraic equations for the unknown coefficients czn, crm  
and parameter Pgas, being the discrete analogue of the 
equations (10) and (13). Its solution is found by Newton’s 
method. The desired accuracy is achieved by increasing the 
power of approximating polynomials in (14). 

 
4.2. Stress intensity factors 
 

The physically meaningful parameters are the stress 
intensity factors (SIF) of mode I and II, defined 
conventionally by 
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They may be determined in terms of the solutions of (10) as 
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4.3. Results 
 

The described numerical procedure was performed  
on the simplifying assumption λ1 = μ1, λ2 = μ2 and for the 
following dimensionless parameters:  
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Fig. 2 shows the dependence of gas pressure on the 
external load. It is seen that with the increasing of the 
external load the internal pressure of the gas decreases. 
This relationship is characterized by the high gradient in the 
range of negative values of load, i.e. for the compressive 
applied pressure. While the external pressure becomes 
tensile, the gradient decreases and the value gasP  tends  
to zero. 

 

 
Fig. 2. Pressure of the gas versus the applied load 

 
Variations of the SIFs of mode I and mode II due  

to the external load are demonstrated in Fig. 3 and Fig. 4, 
respectively. Similarly to the behavior of the curve 
Pgas = Pgas(p) (see Fig. 2) the dependences KI = KI(p)  
and KII = KII(p) are nonlinear. Observe that if p = 0 then KI 
and KII are not equal to zero. Besides, these parameters 
remain positive for the compressive load. Figures 3 and 4 
also depict the influence of the boundary on the SIFs. It can 
be seen that the closer to the boundary the crack is located, 
the more these parameters are. 

 

 
Fig. 3. SIF of mode I versus  the applied load  

 

Fig. 4. SIF of mode II versus the applied load 
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ZAGADNIENIE PÓŁNIESKONCZONEGO 

UWARSTWIONEGO OŚRODKA SPRĘŻYSTEGO 
ZAWIERAJĄCEGO SZCZELINĘ KOŁOWĄ 

WYPEŁNIONĄ GAZEM 
 

Streszczenie: Niniejsza praca poświęcona jest zagadnieniu 
periodycznej dwuwarstwowej półprzestrzeni sprężystej osłabionej 
międzywarstwową szczeliną kołową wypełnioną gazem. 
Zastosowano przybliżone podejście oparte na liniowej teorii 
sprężystości z parametrami mikrolokalnymi w osiowo-
symetrycznym przypadku. Używając transformacji Hankela, 
otrzymano układ dualnych równań całkowych, który 
sprowadzono do numerycznego rozwiązania równań całkowych. 
Zależności dotyczące  wewnętrznego ciśnienia gazu  
i współczynników intensywności naprężeń zilustrowano 
graficznie. 


