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Abstract: In this work we propose mathematical model of important scientific and technical problem – estimating  
of remaining lifetime of constructions elements subjected to high temperature fatigue. The differential equation, with 
initial and final conditions, for assessing the remaining lifetime of three-dimensional solid was obtained.  
This mathematical model is formulated, based on energetic approach. Proposed approach gave us the possibility  
to combine fatigue and creep loadings in the single equation. Known in scientific materials experimental data confirmed 
the correctness of this model.  
 
 
 
 

1. INTRODUCTION 
 

To assess the remaining life of constructions items 
subjected to high temperature fatigue loading, creep growth 
of the crack must be taken into account in the bounds of one 
loading cycle, because many materials are subjected to the 
action of time-variable loading with large cycles. There  
are very few works devoted to the question of creep-fatigue 
crack growth in scientific papers, despite of fact that many 
constructions work under this kind of loading conditions. 
By now in this field of fracture mechanic there are known 
works which are based only on empirical researches (Таyra 
and Оtani, 1986; Garofalo, 1970; Gladwin et al., 1988; 
Koterazawa,1994). In this work there is made an attempt  
to build mathematical model for describing such a process 
using energetic approach, in particular the equation  
of balance of energy changing rates. Similar application  
of energetic approach was carried out in papers  
by Andreykiv and Kit (2006) and Andreykiv and Sas (2006) 
where the models for assessing the lifetime of constructions 
subjected to high temperature fatigue and high temperature 
creep were described.  

 
2. CYCLIC MATHEMATICAL MODEL 

CONSTRUCTION 
 

Let us consider three-dimension solid with crack of 
area So (Fig. 1), subjected to action of high temperature To 
and time–variable cyclic loading p with hold period T. 

It is assumed that the solid is heated uniformly to high 
temperature To. The crack is macroscopic and external 
tension loadings with parameter p applied in such a way 
that stress-deformation state is symmetric. The purpose of 
the problem is to find the time t = to (the number of loading 
cycles N = No) when the crack will grow to the critical size 
So and the solid will fracture. 

According to Andreykiv and Kit (2006) at the crack 
growth the equation of energetic balance is true. 

KГWAQ ++=+ . (1) 

Here A is work of external forces which is constant in our 
case. W - deformation energy of the solid which we can 
represent as following  
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We – elastic constituent of W; Wp
(1)(S) – part of plastic 

energy that depends on crack area S; Wp
(2)(t) – work  

of plastic deformations from external efforts at constant 
crack area during the stretching of fracture zone near the 
cracks contour, that depends on time t; Wp

(3)(t) – work  
of plastic deformations during the unloading, which 
depends on t and is released when the area of the crack is 
constant; Wp

(4)(t) – work of plastic deformations during the 
static loading; Γ – fracture energy that depends only  
on crack area S ; Q =const – the value of heating energy, 
which is born by external factors; K – kinetic energy which 
in our case is a small, thus we will neglect it. 

 

 
 

Fig. 1. Loading mode of a solid with a crack 
 

It follows from the equation of energetic balance that 
the equation of balance of energy changing rates is  
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Putting (2) in (3) we have 
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Since, we will find V = ∂S / ∂t rate of changing  
of crack area during its growth 
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Based on paper by Andreykiv and Sas (2006) 
expression in brackets can be represented as 
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Here γt is specific work of plastic deformations during 
crack growth. Putting (6) in (5) we have 
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Multiplying equation (7) by hold period T and assuming 
that dt = TdN, we will obtain the equation for determination 
the rate of crack growth for one loading cycle 
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Separately creep and fatigue contributions can  
be determined as following  
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For completeness of mathematical model, the following initial 
and final conditions must be added to equation (8)  

( ) ( )0 * * *0, 0 , , ,N S S N N S N S= = = =  (11) 

where critical crack area S* is deduced from energetic 
criterion 

( )t * fCSγ γ= . (12) 

Here γfC – specific fracture energy during crack growth;  
γt – specific work of plastic deformations in prefracture 
zone near the crack tip, which is determined as γt = σofδmax; 
N* – period of precritical macrocrack growth;  
σof – averaged normal stress in fracture zone near the crack 
tip; δmax – normal opening in the crack tip. Thus, kinetic 
equations (8) and conditions (11), (12) compose 
mathematical model for exploring the precritical crack 
growth in three-dimensional solids. 

It can be assumed that during each loading cycle of 
continuous duration there is high temperature creep of 
material in prefracture zone, main period of time of which 
is withstand creep. Based on this, we can determinate 
approximately the opening of prefracture zone δtmax(x,ξ,t)as  

t max max t max( ,ξ, ) ( ,ξ) ( ,ξ,0)x t x x tδ δ δ= + ⋅   (13) 

Here δtmax(x,ξ) is maximum opening of prefracture zone  
at the beginning of loading cycle; t max ( ,ξ,0)xδ – rate  
of opening in prefracture zone during the creep deformation 
in a cycle. Then, based on results Andreykiv and Kit 
(2006), Andreykiv and Sas (2006) and Andreykiv and 
Lishinskaya (1999) the constituents of equation (7) can  
be described as following  
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where: lp – length of initial plastic zone near the crack tip; 
lpt is length of plastic zone near the crack tip for the time 
of incubation period before the leap of the crack; 
σof  = σ0.2 + 0.5Aεt

n; σ0.2  – yield strength of material;  
A, n – parameters of tensile stress-strain diagram. As in 
works Tayra and Otani (1986) and Garofalo (1970), the 
value δtmax(x,ξ) in prefracture zone approximately can be 
presented as  
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and length of plastic zone lp in such form (Andreykiv  
and Sas, 2006): 

1
max of(0,ξ) .pl Eδ σ −=  (17) 

Here E – modulus of elasticity; KImax – stress intensity 
factor. Putting (16) in (17) and conducting necessary 
calculation we will find 
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And therefore equation (10) on the basis of correlations 
(18) and paper by Andreykiv and Sas (2006) for 
determination the creep contribution of crack growth rate 
becomes 
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Based on Andreykiv and Sas (2006) we will present the rate 
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of opening and opening of the crack as 
1
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Put them in (19) we will have 
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Let us consider the contribution dS(f)/dN represented by 
equation (9). According to results of work Shata and 
Terletska (1999) the value ∂Wp

(3) / ∂N we can determine as  
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where εfC - critical value of materials deformation during 
the cyclic loading; α - coefficient that correlate static 
opening with cyclic opening of the crack (Szata  
and Terletska, 1999). 

We consider the case when in every cycle the solid  
is subjected to static loading with hold time T, that is why 
the opening of the crack is large then in the case of pure 
fatigue. Regarding that the second stage is prevailing 
(creep) in loading cycle, we can write the difference  
of openings [δmax(x) – δmin(x) ], using the results of works 
Andreykiv and Lishinska (1999) and Szata and Terletska 
(1999), in form 

( )( )( )2f 2
max min max t max

1( ) ( ) ( ) ( ) 1
2

x x x x t Rδ δ δ δ− = + −  (22) 

where R – coefficient of cycle asymmetry. We can assume 
that R = 0, since 
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In prefracture zone the value ( )f
max t max( ) ( )x x tδ δ+ ⋅   

we will present as 
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Let us regard that the openings in the crack tip  
are constant along the contour of the crack. Therefore 

( )
( )

( )

p 23
p ffc

of max max
fc p0

ffc
of max max p

fc

(0) (0) 1 d
2

( (0) (0) )
6

l
W xL t x

N l

t l L

ε α
σ δ δ

δ

ε α
σ δ δ

δ

⎛ ⎞∂ ⎡ ⎤= + −⎜ ⎟⎜ ⎟⎣ ⎦∂ ⎝ ⎠

= +

∫
 (25) 

The following equations for calculation ∂Wp
(3) / ∂N can be 

used (Andreykiv and Lishinska, 1999; Shata and  
Terletska, 1999): 
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Putting (26) in (24) the ∂Wp
(3) / ∂N is following 

( )
( )

3 2p f 2 2fc of
max max fC(0) (0)

6
W

t E K L
N

ε σ α
δ δ −∂ ⎡ ⎤= +⎢ ⎥⎣ ⎦∂

 (27) 

Availing the correlations (13), (26) and  
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equation (9) becomes  
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Uniting additions dS(f) / dN and dS(c) / dN, according to 
formulas (20) and (28), the final form of kinetic equation 
(8) for estimating the creep-fatigue rate of crack growth can 
be finally written as 
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With initial and final conditions  
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For plane spreading of the crack of length l  in plate 
the correlations (30)-(32) will become  
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( ) ( )0 * * *0, 0 , , ,N l l N N l N l= = = =  (34) 

fCmax )( KlK =∗Ι . (35) 

Correlations (30)–(35) compose the mathematical 
model for determination the period N* of precritical growth 
of creep-fatigue crack in solid. 

 
3. APPROBATION OF THE MODEL 
 

To confirm the efficiency and correctness  
of correlations (33)–(35) we will test the model comparing 
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with experimental data (Garofalo, 1970) for stainless steel 
321. For this kind of steel the mechanical characteristics  
are the following E = 1.9·105 MPa; σt = 450 MPa, 
Kfc = 90 MPa m0.5 for temperature 650 oС. 

Based on experimental data for pure fatigue (Fig. 2)  
we will find coefficient α = 0.01. Then, using the data from 
work Garofalo (1970) we will have the constants A1 and m: 
A1 = 6 10–5, m = 1.43. Using the results of work Garofalo 
(1970) we can show that dl(c)/dN is significantly less then 
dl(f)/dN, so we can neglect the constituent dl(c)/dN, and the 
final kinetic equation (33) will become: 

2
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. (36) 

Equation (36) was compared with results of experimental 
data (Garofalo, 1970): 
 

 
 

Fig. 2. Graphical comparison between theoretical results V∼KImax 
(solid line) and experimental data for stainless steel 321 
(Garofalo, 1970) 

 
This comparing confirms the correctness of proposed 
mathematical model (33)-(35). 
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MATEMATYCZNY MODEL OCENY CZASU WZROSTU 

PĘKNIĘCIA W WYNIKU PEŁZANIA – ZMĘCZENIA 
DLA MATERIAŁÓW KONSTRUKCYJNYCH PRZY 

WYSOKIEJ TEMPERATURZE 
 

Streszczenie: W tej pracy zaproponowano matematyczny model 
obliczeniowy dla istotnego zagadnienia naukowo – 
inżynierskiego. tj. oceny czasu życia elementów konstrukcyjnych 
poddanych wysokotemperaturowemu zmęczeniu. Uzyskano 
różniczkowe równanie dla pewnych początkowych i końcowych 
warunków do oceny trwałości elementów trójwymiarowych. 
Powyższy model matematyczny sformułowano na podstawie 
podejścia energetycznego. Zaproponowane podejście umożliwia 
połączenie obciążeń zmęczeniowych i pełzania w jednym 
równaniu. Znane z literatury wyniki doświadczeń potwierdziły 
słuszność proponowanego modelu. 
 


