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Abstract: Data exploration or data mining goals can be reached by using variety of 

methods such as the fuzzy set theory or the rough sets theory. An interesting group of data 

exploration methods is based on minimization of convex and piecewise linear (CPL) 

criterion functions. This method originated from the theory of neural networks (multilayer 

Perceptrons). Powerful methods of data mining based on the support vector machines 

(SVM) can be also linked to this concept. 

Hierarchical networks of formal neurons or multivariate decision trees can be induced 

from learning sets through minimization CPL criterion functions  specified for 

classification problem. Another type of the CPL criterion functions can be used for 

designing visualizing data transformations. Separability of the transformed learning sets is 

a fundamental concept in the CPL approach to designing data mining tools. 

 

Keywords: data transformations, data aggregation, separable data sets, elementary 

classifiers, convex and piecewise linear (CPL) criterion function 

 

 

 

1. Introduction 
 

Data exploration is aimed at discovering regularities (patterns) in data sets and at 

designing such data models which take into account these patterns. Many data 

exploration goals can be reached through the process of pattern recognition [1], [2], 

[3]. In this approach each object or event is represented as a feature vector or as a 

point in a multidimensional feature space. The pattern recognition process includes 

three basic stages: feature selection, feature extraction and classification. The 

primary goal of classification is proper allocation of each object or event into one 

of the classes (categories). This goal is often achieved by using variety of tools 

originating, among others, from case based reasoning techniques, neural networks 

models, decision trees approach. Feature selection stage is aimed at reducing 

dimensionality of the feature space through neglecting such features which are not 
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important in the classification process. The dimensionality reduction can be 

achieved also during feature extraction stage in result of feature space 

transformations. 

Many concepts in the theory and applications of artificial neural networks and 

pattern recognition has his beginning in the model of the Perceptron [4]. 

Hierarchical layers of formal neurons (multilayer perceptrons) still belong to the 

most fundamental models of neural networks [1]. Designing a neural network 

relates to the choice of a neural network structure (e.g. the number of layers and 

the number of elements in particular layers) and the weights of connections 

between  elements of successive layers. The above designing tasks can be 

performed through minimization of the convex and piecewise linear (CPL) 

criterion functions deriving from the Perceptron model [4]. Linear separability of 

learning sets in a selected feature space is a big issue of the perceptron theory and 

plays a central role in applications the perceptron CPL criterion function. Similar 

CPL criterion functions can be used, for example, in designing decision trees, 

designing data transformation for feature extraction, feature selection, or data 

visualization. These topics are discussed more closely in the presented paper. 

Particular attention is paid to problems of designing separable layers of elementary 

classifiers. 

 

 

2. Separable learning sets 

 

Let us assume that each of the m  analysed objects jO  ( mj ,...,1= ) is represented 

as the  feature vector 
T

jnjj xx ],...,[ 1=x or as a point in the n -dimensional feature 

space ][nF ( ][nFj ∈x ). The components (features) ijx  of the vector jx  are 

supposed to be numerical results of a variety of examinations of the given object 

jO . The feature vectors jx  can be of mixed, qualitative-quantitative type with n  

binary or real components ijx  ( }1,0{∈ijx  or Rxij ∈ ). 

We assume that the database contains descriptions )(kjx  of m  objects 

)(kO j  ( mj ,...,1= ) labelled according to their category (class) kω  ( Kk ,...,1= ). 

The learning sets kC  can be created on this basis. One learning set kC  contains 

km  feature vectors )(kjx  assigned to the k -th category kω  

)}({ kC jk x=   )( kIj ∈  (1) 
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where kI  is the set of indices j  of such feature vectors )(kjx  from the class kω   

which belong to the set kC . 

Definition 1: The learning sets kC  (1) are separable in the feature space ][nF , if 

they are disjunctive in this space ( φ=∩ 'kk CC  for 'kk ≠ ). It means that feature 

vectors )(kjx  and )'(' kjx  from different learning sets kC  and 'kC  cannot be 

equal: 

)'()()'()()'( '' kkIjandIjkk jjkk xx ≠∈∀∈∀⇒≠  (2) 

We are also considering the separation of the sets kC  (1) by the hyperplanes 

),( kkH θw  in the feature space ][nF  

}:{),( k

T

kkkH θθ == xwxw  (3) 

where 
nT

knkk Rww ∈= ],...,[ 1w  is the weight vector, 
1

Rk ∈θ  is the threshold, 

and xw T

k  is the inner product. 

Definition 2: The learning sets (1) are linearly separable in the n-dimensional 

feature space ][nF  if each of these sets kC  can be fully separated by some 

hyperplane ),( kkH θw  (3) from the sum iC∪  ( ki ≠ ) of the remaining sets iC : 

kj

T

kkj

kj

T

kkjkk

kkkCkand

kCkKk

θ

θθ

<≠∈∀

>∈∀∃∈∃

)'()',)'((

)())((),})(,...,1{(

''' xwx

xwxw
 (4) 

In accordance with relation (4), all the vectors )(kjx  belonging to the learning set 

kC  are situated on the positive side ( kj

T

k k θ>)(xw ) of the hyperplane 

),( kkH θw  (3) and all the feature vectors )'(' kjx  from the remaining sets iC  are 

situated on the negative side ( kj

T

k k θ<)'('xw ) of this hyperplane. 

The separation of data sets kC  by the hyperplanes ),( kkH θw  (3) can by 

linked to data transformation by a layer of K  formal neurons ),( kkFN θw . The 

formal neuron ),( kkFN θw  is defined by the threshold decision rule );,( xw kkq θ : 
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where q  is the output, 
nT

knkk Rww ∈= ],...,[ 1w  is the weight vector, 
1

Rk ∈θ  is 

the threshold and 
T

nxx ],...,[ 1=x is the input feature vector. 

The feature vector x  activates ( 1=r ) the formal neuron ),( kkFN θw  if and 

only if x  is situated on the positive side of  the hyperplane ),( kkH θw  

( k

T

k θ≥xw ). 

Layer of K  formal neurons ),( iiFN θw  transforms the feature vectors x  

into the binary vectors )(xqq = , where ],...,[ 1 Kqq=q , );,( xw iii qq θ= (5). 

Such a layer can be used as the classifier with the allocation rule given below  

)();,()()1);,(( kiikk thenqkiandqif ωθθ ∈≠∀= xxwxw  (6) 

A vector x  is allocated to the class kω  if only one neuron ),( kkFN θw  in 

this layer is activated. We can remark that if the learning sets kC  (1) are linearly 

separable (4), then the layer of K  formal neurons ),( iiFN θw  with the rule (6) 

can allocate properly all the feature vectors )(kjx  (1).   

 

 

3. Elementary classifiers 

 

Let us take into account a layer of L  elementary classifiers )( iii QQ v=  

( Li ,...,1= ) with the binary outputs iq  ( }1,0{∈iq ). Each classifier iQ  is defined 

on the feature vectors x  by an individual decision rule );( xv iii qq = : 

);( xv iii qq =   ( Li ,...,1= ) (7) 

where 
T

ini vv ],...,[ '1=iv  is 'n - dimensional vector of parameters. 

The classifier iQ  is activated by the feature vectors x  if and only if 

1);( =xv iiq . Formal neurons ),( kkFN θw  (5) can be used as the elementary 

classifiers iQ . 
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Definition 3: The activation field iS  of the elementary classifier )( iii QQ v=  is 

defined as the set of such feature vectors x , which activates ( 1);( =xv iiq ) this 

classifier. 

}1);(:{ == xvx iii qS  (8) 

The layer of L  elementary classifiers iQ   transforms each feature vector 

)(kjx  from the sets kC  (1) into the vector )(kjq  with L  binary components 

))(;( kqq jiii xv= .  

T

jLLjj kqkqk ))](;()),...,(;([)( 11 xvxvq =  (9) 

where 
T

ini vv ],...,[ '1=iv  is a vector of parameters. 

Vectors )(kjq  form new data representation which can be useful in designing 

valuable decision rules for classification purpose [2]. The decision rules could be 

designed more efficiently on the basis of the transformed vectors )(kjq  than on 

the basis of the feature vectors )(kjx . An example of the decision rule is given by 

(6). The transformed vectors )(kjq  form the sets kD : 

)}({ kD jk q=   )( KIj ∈  (10) 

One of the fundamental goals in designing layers of elementary classifiers iQ  

could be the separability (2) or the linear separability (4) of the transformed sets 

kD . Additionally, we could demand the separable aggregation of the learning sets 

kC  (1).  

Definition 4: The transformation (9) results in the separable aggregation of the 

learning sets kC  (1) if and only if the transformed sets kD  (10) are separable (2), 

each feature vector xj(k) (1) activates at least one elementary classifiers iQ   (7) of 

the layer, and the number 'm  of different vectors )(kjq  (9) in the sets kD  is less 

than m . 

Classification postulate I: The transformation (9) defined by the layer of 'L  

elementary classifiers iQ  should result in the separable (2) sets kD  (10) with a low 

number 'm  of different vectors )(kjq  (9) and a low dimensionality 'L  of these 

vectors.  
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Few examples of  the elementary classifiers iQ  are given below: 

Example 1: Formal neurons ),( iiFN θw  (5) can be treated as the elementary 

classifiers iQ  (8). In this case, the decision rule ))(;( kqq jiii xv=  (7) is based on 

the vector of parameters iv  given below: 

T

i

T

ii ],[ θwv =  (11) 

The activation field iS  (8) of the formal neuron ),( iiFN θw  (5) is the positive 

half-space defined by the hyperplane ),( iiH θw  (3). 

Example 2: The number n  of inputs jx  to formal neuron ),( iiFN θw  (5) can be 

reduced to one. Such reduced neuron will be called as logical element ),( iiwLE θ . 

The elementary classifiers iQ  are determined in this case by the vector of 

parameters T

iii w ],[ θ=v  (11) with only two components iw  and iθ . The decision 

rule ))(;( kqq jiii xv=  (8) can be reduced to the below form: 

)0))(;(()1))(;(())(( ==≥ kqelsekqthenkxwif jiijiiijii xvxvθ

 (12) 

The activation field iS  (8) of the logical element ),( iiwLE θ  is the positive half-

space defined by such hyperplanes ),( kkH θw H(wk,θk) (3), which are parallel to 

all but one axis of the feature space ][nF . 

Example 3:  The elementary classifier iQ  (7) can be based on the Euclidean ball 

),( iiEK ρw  centered in the point iw  and with the radius iρ  in the feature space 

][nF : 

})()(:{),( ii

T

iiiEK ρρ ≤−−= wxwxxw  (13) 

The vector of parameters T

i

T

ii ],[ ρwv =  defines the decision rule 

))(;( kqq jiii xv=  (7) in the below manner  

)0))(;v((

)1))(;v(()))(())(((

=

=≤−−

kqelse

kqthenkkif

jii

jiiiij

T

ij

x

xwxwx ρ
 (14) 
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The activation field iS  (8) of such elementary classifier iQ  (7) is the ball 

),( iiEK ρw  (13). 

Example 4: The 1L  ball ),(1 iiLK ρw  centered in the point iw  and with the radius 

iρ  in the feature space ][nF  also can serve as an elementary classifier iQ  (8). 

}...:{),( 111 inniiL wxwxK ρρ ≤−++−= xw  (15) 

The decision rule ))(;( kqq jiii xv=  (7) has now the following form: 

)0))(;v((

)1))(;v(()...( 11

=

=≤−++−

kqelse

kqthenwxwxif

jii

jiiinn

x

xρ
 (16) 

The activation field iS  (8) of this elementary classifier iQ  (7) is the ball 

),(1 iiLK ρw  (15). 

Example 5:  The 1L  ball ),(1 iiLK ρw  (15) can be generalized to the ball 

),( iiPK ρw  

}...:{),( 111,1 inniniiiiL wxwxK ρααρα ≤−++−= xw  (17) 

where 
T

inii ],...,[ '1 ααα =  is the vector of features costs ikα . 

 

The decision rule ))(;( kqq jiii xv=  (16) is generalised with the parameters 

T

i

T

i

T

ii ],,[v ραw=  to: 

)0))(;(()1))(;((

))(...)(( 111

==

≤−++−

kqelsekqthen

wkxwkxif

jiijii

injninji

xvxv

ραα
 (18) 

Let us remark that the number of parameters in the above rule has been 

increased to ( 12 +n ) in comparison to ( 1+n ) parameters used in the rule (16). 

 

 

4. Dipolar strategy of separable layers designing 

 

Lets us take into consideration the problem of designing separable layers of 

elementary classifiers iQ  ( Li ,...,1= ) (7). “Separable layer”is such a layer of L  
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elementary classifiers iQ  (7) which results in the separability (2) of the 

transformed sets kD  (10). The dipolar and the ranked strategies of designing 

separable layers of formal neurons were proposed earlier [6], [7]. Now, we will 

generalize these strategies to the layers of elementary classifiers iQ  (7). We will 

start with the description of the dipolar strategy. This strategy is based on the 

concept of clear and mixed dipoles [5].  

Definition 5: A pair of different feature vectors ))'(),(( ' kk jj xx  ( )'()( ' kk jj xx ≠ ) 

constitutes a mixed dipole if and only if these vectors belong to different classes 

kω  ( 'kk ≠ ). Similarly, a pair of different feature vectors from the same class kω  

constitutes the clear dipole ))'(),(( ' kk jj xx . 

Definition 6: The elementary classifier iQ  (7) separates (divides) the dipole 

))'(),(( ' kk jj xx  if  only one feature vector )(kjx  or )'(' kjx  from this pair 

activates this element ( 1))(;( =kq jii xv  and 0))'(;( ' =kq jii xv  or 

0))(;( =kq jii xv  and 1))'(;( ' =kq jii xv ). 

Lemma 1: The necessary and sufficient condition for the separability (Def. 1) of the 

sets kD  (10) transformed by the layer (9) is the separation of each mixed dipole 

))'(),(( ' kk jj xx  by at least one elementary classifier iQ  (7) of the layer. 

The proof of similar result for layer of formal neurons ),( θwFN  (4) has been 

given in [5], [8]. In accordance with the Lemma 1, a layer which divides all mixed 

dipoles transforms separable sets kC  (1) into separable sets kD  (10). In order to 

preserve the chance for correct classification of all feature vectors )(kjx  (1), an 

additional postulate is introduced: 

Classification postulate II: Each feature vector )(kjx  (1) should activate 

( 1))(;( =kq jii xv ) at least  one elementary classifier iQ  (7) of a given layer (9) . 

 

 

5. Ranked strategy of separable layers designing 

 

Let us take into consideration the ranked strategy of designing separable layers of 

elementary classifiers iQ  ( Li ,...,1= ) (7). This strategy uses a fixed order between 
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elementary classifiers iQ  of the layer which is based on the indexing of these 

classifiers. The relation “prior to” is defined between any two elementary 

classifiers lQ  and iQ  of the layer on the base of the indices l  and i  in the below 

manner. 

Definition 7: The classifier iQ  (7) is prior to the classifier lQ   if and only if li < . 

Definition 8: The l -th ranked field lR ( Ll ,...,1= ) of the layer of L  elementary 

iQ  classifiers is a set of such feature vectors )(kjx  (1) which activate the l -th 

classifier lQ  and do not activate any of the prior classifiers iQ .   

}0))(;v()(1))(;v(:)({ =<∀== kqliandkqkR jiijiljl xxx  (19) 

Definition 9: The ranked field iR  (19) is deterministically admissible if and only if 

it contains feature vectors )(kjx  from only one learning set kC  (1).    

Definition 10: The ranked field iR  (19) is statistically admissible at the level α   

( 5.00 << α ) if and only if it contains feature vectors )(kjx  not only from the 

dominant set kC  but also from other sets iC  (1) in a fraction if   less than α  

( α<if ).  

The fraction if  of elements )(ljx  from non-dominant sets lC   is defined by 

the expression below:   

 
)(')(

)('

kmkm

km
f

ii

i
i

+
=  (20)    

where )(kmi  is the number of elements )(kjx  from the dominant set kC  in the 

ranked field iR  (19) and )(' kmi  is the number of elements )(ljx  in this field from 

all non-dominant sets lC  (1) ( )(')( kmkm ii > . 

The layer of L  elementary classifiers iQ  (7) with admissible ranked fields iR  

(19) will be called  an admissible one (deterministically or statistically admissible). 

It can be seen that the number L  of  classifiers iR   in an admissible layer fulfills 

below condition. 

mLK ≤≤  (21) 
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where K  is the number of the learning sets kC  (1), and m  is the number of 

feature vectors )(kjx  in these sets. 

The lowest possible number KL =  appears when the ranked fields iR  (19) 

are extremely large and contains whole learning sets kC  ( },...,1{ Kk ∈∀  

kk CR = (1). The highest possible number ml =  appears when each ranked field 

iR  (19) contains only one feature vector )(ljx . It can be expected that layer of 

classifiers iQ  with large ranked fields iR  (19) should have greater generalizing 

power than the layer with small active fields. 

Definition 11: The layer of elementary classifiers iQ  (7) with deterministically 

admissible   (Def. 7) ranked fields iR  (19) forms the ranked layer if and only if 

each feature vector )(kjx  from the sets kC  (1) belongs to one of this fields.    

The ranked layer of L  elementary classifiers iQ  transforms each feature 

vector )(kjx  into the vector )(kjq  (9) with L  binary components 

))(;( kqq jiii xv= . The separability (2) of the sets kC  (1) is preserved during the 

transformation by the ranked layer as it is proven below. 

Lemma 2: If the sets kC  (1) are separable (2), then the sets kD  (10) at the output of 

the ranked layers are also separable. 

Proof: The sufficient condition for the sets kD  (10) separability has the form (2). 

)'()()'()()'( '' kkIjandIjkk jjkk qq ≠∈∀∈∀⇒≠  (22) 

The above condition results directly from the definition of the ranked fields 

iR  (19). Two vectors )(kjq  and )'(' kjq  related to the ranked fields jR  and 'jR  

are linked to different classes kω  and 'kω . So, these vectors cannot be equal 

( )'()( ' kk jj qq ≠ ). �  

Theorem 1: The ranked layer (Def. 9) of L  elementary classifiers iQ  with the 

decision rules );( xv iiq  (7) transforms the separable sets kC  (1) into linearly 

separable (4) sets kD  (10). 
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Proof:  Let us assign the following parameter αi to each ranked field iR   (19). 

iiLi
2

1
}),...,1{( =∈∀ α  (23) 

The hyperplane ),( kkH θz  (3) used for separation of the set kD  (10) from the 

sum iD∪  of the remaining sets iD  ( ki ≠ ) can be defined by the weight vector 

T

kLkk zz ],...,[ 1=z  with the following components kiz  

ikiki

ikiki

zthenCRifand

zthenCRifLi

α

α

−=∉

=∈∈∀ }),...,1{(
 (24) 

By direct computations we can verify the inequalities below. 

0)(),)((

0)())(})(,...,1{(

<≠∈∀

>∈∀∈∃

ikiDkand

kDkKk

j

T

kkj

j

T

kkj

qzq

qzq
 (25) 

where kz  is the weight vector with the components kiz  (24). The inequalities (25) 

mean that the sets kD  (10) are linearly separable (4).�  

The considerations above are similar to the proof given in the paper [7]. The 

notions used in Theorem 1 are illustrated by the below Figure. 

 

Fig. 1. Linearization (25) of three data sets Ck by the ranked layer of L elementary classifiers Qi  (7) 
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Linearization (26) of data sets kC  (1) by the ranked layer of L  elementary 

classifiers iQ   has such consequence, that the second layer of K  formal neurons 

),( kkFN θw  defined on the vectors )(kjq  (9) can separate exactly the sets 

kD (10). As a consequence, each feature vector )(kjx  (1) can be correctly 

classified by the hierarchical network formed by such two layers. 

 

 

6. Optimization of separable layers 

 

A layer of L  elementary classifiers iQ  (7) transforms each feature vector 

)(kjx  (1) into the output vector 
T

Lqq ],...,[ 11 =q (9) with L  binary components 

iq  ( }1,0{∈iq ). Many feature vectors )(kjx  can be transformed into the same 

vector 1q  ( ))'()()'( '11 kkll qq ≠⇒≠ ) in this manner. The set of such feature 

vectors )(kjx  is called as the l -th activation field lS  of the layer of elementary 

classifiers. 

}))](,()),...,(,([:)({ 11 l

T

jLLjjl kqkqkS qxvxvx ==  (26) 

where )()()'( '11 kkll qq ≠≠∀ . 

Definition 12: The set lS  (26) will be called the clear activation field if all feature 

vectors )(kjx  (1) from this set ( lj Sk ∈)(x ) belong to the same class kω . 

Similarly, the set lS  is the mixed activation field if it contains feature vectors 

)(kjx  (1) from different classes kω . 

The field )(kSl  and the output vector )(klq  will be linked to the k -th class 

kω  if and only if the most of the labeled feature vectors )(kjx  from the set 

lS  (26) is labeled to the class kω . 

All feature vectors )(kjx  from the l -th activation field lS  are aggregated by 

the layer of elementary classifiers into one vector lq . In other words, the vector lq  

generalizes all feature vectors )(kjx  from the field lS  (26). It can be expected 

that the layer of elementary classifiers with large and clear activation fields lS  (26) 
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will have a great generalization power. Such layer could be used also as a classifier 

with the following decision rule 

kl thenkSif ω∈∈ 00 )( xx  (27) 

where )(kSl  is such activation field (26) that most of the labeled feature vectors 

(1) from this field belong to the class kω . 

A quality of the decision rule can be evaluated by the error rate er [9]. The 

classification error rate er is often evaluated as 

m

m
er e=

^

 (28) 

where em  is the number of such feature vector )(kjx  from the sets kC  (1) which 

are wrongly allocated by the decision rule (27). The error rate evaluation (28) is 

positively biased (optimistic bias). The unbiased error rate er evaluations are based 

on such technique as cross-validation or on using testing sets [1]. 

Optimization problem I: To design such a layer of L  of elementary classifiers 

iQ (7) which will produce the decision rule (27) with the minimal error rate er. 

Definition 13: A layer L  of  elementary classifiers iQ  (7) will be called  separable 

if each feature vector )(kjx  from the sets kC  (1) belongs to some clear activation 

field lS  (26). 

Optimization problem II: To design a separable layer of L  of elementary 

classifiers iQ  (7) with minimal number  'L  of activation fields )(kSl  or the output 

vectors lq  (26). 

The minimal number 'L  of the activation fields lS  (26) can not be less than 

the number K  of the classes kω  ( KL ≥' ). 

One can see, that a separable layer of elementary classifiers iQ  (7) with the 

decision rule (27) allocates correctly all feature vectors )(kjx  from the learning 

sets kC  (1). In this case, the estimator (28) of the error rate er is equal to zero. The  

classifiers which have error rate evaluation (28) on the sets kC  (1) equal to zero 

are often overfittning to these sets. As a consequence, such classifier can have a 

low generalisation power and the classification of new objects x  might often be 
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wrong. So, the classification (27) based only on the clear activation fields lS  (26) 

could be far from optimal. In order to improve the classification rule (26), the clear 

activation fields lS  (26) should be replaced by such fields lS  (26) which can be 

“slightly” mixed. 

Definition 14: A layer of L  elementary classifiers iQ  (7) will be called the  

ε - separable, if and only if the ratio mme /  (28) of the wrongly classified feature 

vectors )(kjx  by the rule is no greater than ε   ( ε≤mme / ), where ε  is a 

positive parameter ( 0>ε ). 

Optimization problem III: Design a ε -separable layer of L  of elementary 

classifiers iQ  (7) with minimal number  'L  of activation fields )(kSl  (26). 

A  separable layer of L  elementary classifiers iQ  (Def. 9) can serve also in 

data aggregation. Let us define the aggregation coefficient aη  f  such layer a in the 

following manner 

Km

mm
a

−

−
=

'
η  (29) 

where m  is the number of the feature vectors )(kjx  from the sets kC  (1),  'm  is 

the number of different output vectors lq  (26) from a separable layer, and K  is 

the number of the classes kω  or the learning sets kC  (1). 

The minimal number 'm  of the output vectors lq  (26) from a separable layer 

is equal to K  ( Km =' ). The aggregation coefficient aη  (29) takes the maximal 

value equal to one ( 1=aη ) in this ideal situation. The aggregation coefficient aη  

(29) of a layer of formal neurons ),( iiFN θw  (5) can take the maximal value 

1=aη  if and only if the learning sets kC  (1) are linearly separable. The maximal 

value of the number 'm  is equal to m . There is no aggregation in this case and the 

aggregation coefficient aη  (29) takes the minimal value equal to 0  ( 0=aη ). As a 

result. 

10 ≤≤ aη  (30) 

It can be noted that a solution of the Optimization problem II leads to the 

maximisation of the aggregation coefficient aη  (29). 
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In some cases, the above optimization problems can be solved through 

minimisation of the convex and piecewise linear (CPL) criterion functions [7]. We 

will pay particular attention to the perceptron criterion function (CPL). This 

function is linked to the beginning of the theory of neural networks. 

 

 

7. Convex and piecewise linear criterion function (CPL) 

 

Let us consider designing a separable layer of the formal neurons ),( iiFN θw  (5) 

or the logical elements ),( iiLE θw  (12). In this case, the designing procedure can 

be based on a sequence of minimisation of the convex and piecewise linear (CPL) 

criterion functions ),( θwlΨ  ([3], [4]). The perceptron criterion function 

),( θwlΨ  belongs to the CPL  family. It is easy to define the functions ),( θwlΨ  

by using the positive 
+

lG  and the negative 
−

lG  sets of the feature vectors 

T

jnjj xx ],...,[ 1=x  (1). 

−−++ ∈=∈= ljlljl JjGandJjG }{}{ xx  (31) 

Each element jx  of the set 
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lG  defines the positive penalty function 
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Similarly, each element jx  of the set 
−

lG  defines the negative penalty 

function ),( θϕ w−

j . 
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j
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xw
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w  (33) 

The penalty function ),( θϕ w+

j  is aimed at positioning the vector jx  

(
+∈ lj Gx ) on the positive side of the hyperplane ),( kkH θw  (3). Similarly, the 

function ),( θϕ w−

j  should set the vector jx  (
−∈ lj Gx ) on the negative side of this 

hyperplane. 
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Fig. 2. The penalty functions ϕj
+(w) (32) and ϕj

-(w) (33). 

The criterion function ),( θwlΨ  is the positively weighted sum of the penalty 

functions ),( θϕ w+

j  and ),( θϕ w−

j . 

∑∑
−+ ∈

−−

∈

++ +=Ψ

ll Jj

jj

Jj

jjl ),(),(),( θϕαθϕαθ www  (34) 

where 
+

jα  ( 0>+

jα ) and 
−

jα  ( 0>−

jα ) are the positive parameters (prices). 

The criterion function ),( θwlΨ  belongs to the family of the convex and 

piecewise linear (CPL) criterion functions. Minimization of the function ),( θwlΨ  

allows to find optimal parameters ),( **

ll θw . 

0),(min),( *** >Ψ=Ψ=Ψ θθ ww lllll  (35) 

The basis exchange algorithms which are similar to linear programming allow 

to find the minimum of the criterion function ),( θwlΨ  efficiently, even in the 

case of large, multidimensional data sets 
+

lG  and 
−

lG  (29) [5]. 

It has been proved that the minimal value 
*

lΨ  of the peceptron criterion 

function ),( θwlΨ  (32) is equal to zero ( 0* =Ψl ) if and only if the positive 
+

lG  

and the negative 
−

lG  sets (29) are linearly separable (4). In this case, all elements 

jx  of the set 
+

lG  (29) are located on the positive side of the hyperplane 

),( **

llH θw  (3) and all elements jx  of the set 
−

lG  are located on the negative side: 

*

'

*

'

**
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If the sets 
+

lG  and 
−

lG  (22) are not linearly separable (4), then 0* >Ψl  and 

the inequalities (34) are fulfilled only partly, not by all, but by the majority of the 

elements jx  of the sets (22). 

Minimization of the function ),( θwlΨ  (32) allows one to find optimal 

parameters ),( **

ll θw  which define such hyperplane ),( **

llH θw  (3), which 

separates relatively well two sets 
+

lG  and 
−

lG  (22). The parameters ),( **

ll θw  can 

be also used in defining the l -th element ),( **

llFN θw  (5) of a neural layer. 

The perceptron criterion function ),( θwlΨ  (32) can be used in designing 

separable layers of formal neurons ),( llFN θw  (5) both in accordance with the 

dipolar strategy described in Paragraph 4 as well as in accordance with the ranked 

strategy described in Paragraph 5. Specification of the criterion function ),( θwlΨ  

(32) to particular strategy is achieved through an adequate choice of the sets 
+

lG  

and 
−

lG  (22) and the prices 
+

jα or 
−

jα  of the feature vectors )(kjx . 

Designing separable layers of the formal neurons ),( llFN θw  (5) or the 

logical elements ),( iiLE θw  (12) can be done in a sequential manner. During the 

l -th stage the l -th element ),( **

llFN θw  (5) or ),( iiLE θw  (12) of the layer is 

designed through minimization of the criterion function ),( θwlΨ  (32). 

Both the dipolar and the ranked strategy of separable layer designing can be 

optimised in accordance with the postulates described in Paragraph 6. In order to 

obtain a layer with large activation fields lS  (26) (Optimization problem II) the 

following postulate has been formulated in the framework of the sequential dipolar 

strategy: 

“… First neuron should be designed in such a manner that its hyperplane divides 

the greatest number possible of mixed dipoles and a possibly low number of the 

clear dipoles. Second neuron should divide the greatest number possible of mixed 

dipoles undivided by the first neuron, and so on. The procedure is stopped after all 

mixed dipoles are divided….” [ 5 ] 

Similar goal in the framework of the ranked strategy is realized through the 

postulate of large ranked fields iR  (19). These postulates are aimed at achieving a 

separable layer with a large generalization power. Such layer should allow for 

considerable data aggregation (29) or for classification rules (27) with a low error 

rate. 
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8. Concluding remarks 

 

Designing separable layers from different types of elementary classifiers iQ  (7) 

was discussed in this paper. The dipolar and the ranked strategy of separable layers 

designing was described. The dipolar strategy allows for preserving separability (2) 

of the learning sets kC  (1) by the design layer of elementary classifiers iQ  Ranked 

layers have a fundamental property of linearization of learning sets. This means 

that the separable data sets kC  (1) are transformed by the ranked layer into linearly 

separable (4) sets kD  (12). A simplified representation of a classification problem 

can be reached as a result of such transformation. Linearization of data sets by the 

ranked layers could find important applications also in the methods originating 

from Support Vector Machines (SVM) [3]. Both the dipolar, as well as the ranked 

layers, can be used as a tool for separable data aggregation. 

The deterministic version of the dipolar and the ranked strategies was 

discussed in this paper. The deterministic approach has a constraint in the form of 

data overfitting. It can be expected that the statistical approach towards designing 

ranked layers (e.g. Def. 8) combined with feature selection techniques will increase 

the chance of obtaining accurate classifiers with a large discriminative power. 

The dipolar and the ranked strategies of designing separable layers of the 

formal neurons ),( llFN θw  (5) or the logical elements ),( llLE θw  (12) can be 

done in a sequential manner. The optimisation of the parameters ),( ll θw  (5) or 

),( ll θw  (12) during the l -th stage of designing can be done through minimisation 

of the convex and piecewise linear (CPL) criterion functions ),( θwlΨ  (32). The 

basis exchange algorithms which are similar to linear programming allow to find 

the minimum of the criterion functions ),( θwlΨ  [5]. Designing separable layers 

from such elementary classifiers iQ  (7) which are based on the Euclidean balls 

),( iiEK ρw  (13) demand other types of algorithms. For example, the genetic 

algorithms can be used in the designing process. 
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SEPAROWALNA AGREGACJA DANYCH W WARSTWACH 
KLASYFIKATORÓW ELEMENTARNYCH 

 
Streszczenie: Cele eksploracji danych mogą być osiągnięte przy użyciu różnorodnych 

metod, takich jak teoria zbiorów rozmytych lub teoria zbiorów przybliżonych. Interesują-

ca grupa metod eksploracji danych bazuje na minimalizacji wypukłych i odcinkowo-

liniowych (CPL) funkcji kryterialnych. Metody te wywodzą się z teorii sieci neuropodob-

nych (wielowarstwowy perceptron). Do tej grupy mogą być także zaliczone silne oblicze-

niowo metody eksploracji danych bazujące na maszynach wektorów podpierających 

(SVM). 

Hierarchiczne sieci neuronów formalnych lub wielowymiarowe drzewa decyzyjne mogą 

być zbudowane na podstawie zbiorów uczących poprzez minimalizację funkcji kryterial-

nych typu CPL dostosowanych do problemu klasyfikacji. Inny typ funkcji kryterialnych 

CPL może być użyty do projektowania wizualizacyjnych transformacji danych. Podstawą 

w omawianym podejściu CPL do projektowania narzędzi eksploracji danych jest separo-

walność transformowanych zbiorów uczących.  

 
Słowa kluczowe: transformacje danych, agregacja danych, separowalne zbiory danych, 

klasyfikatory elementarne, wypukła i odcinkowo-liniowa (CPL) funkcja kryterialna 
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