Identyfikatory
Warianty tytułu
Konferencja
Neural Networks and Soft Computing/International Symposium (30.06-02.07.2005 ; Cracow, Poland)
Języki publikacji
Abstrakty
This paper describes an application of feedforward neural network to analyse the SASW (Spectral Analysis of Surface Waves) measurements of the soil. The free field dynamic experiment was performed to determine the soil dynamic properties. An inversion process is based on the comparison of experimental and theoretical phase velocity curves. The results of the experiment are pre-processed by a neural network. The dynamic soil profile is compared with the real soil profile based on the geotechnical site prospect.
Rocznik
Tom
Strony
209--217
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Structural Mechanics, Cracow University of Technology, Cracow, Poland
Bibliografia
- [1] M. O. Al-Hunaidi. Analysis of dispersed multi-mode signals of the SASW method using the multiple filter/crosscorrelation technique. Soil Dynamics and Earthquake Engineering, 13: 13-24, 1994.
- [2] G. Degrande, W. Alaerts. Spectral Version 7.01: A Direct Stiffness Formulation for harmonic and Transient Wave Propagation in Layered Dry, Saturatrd and unsaturated Poroelastic Media. User’s manual, Department of Civil Engineering, Katholieke Universiteit Leuven, 1999.
- [3] W. Dewulf, G. Degrande, G. De Roeck. Practical Application of the SASW Method. Internal report 37-BWM-03, Department of Civil Engineering, Katholieke Universiteit Leuven, June 1995. IWONL research grant CI 1/4-7672/091.
- [4] V. Ganji, N. Gucunski, S. Nazarian. Automated inversion procedure for spectral analysis of surface waves. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE, 124(8): 757-770, 1998.
- [5] N. Gucunski, R.D. Woods. Use of Rayleigh modes in interpretation of SASW test. In Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. II: 1399-1408, University of Missouri, St. Louis, 1991.
- [6] N. Gucunski, R.D. Woods. Numerical simulation of the SASW test. Soil Dynamics and Earthquake Engineering, 11: 213-227, 1992.
- [7] W. Haegeman. In Situ Tests Retie-Waremme-Lincent. Report RUG IV. 1.16.3, Soil Mechanics Laboratory, Ghent University, September 2001. STWW Programme Technology and Economy, Project IWT-000152.
- [8] N.A. Haskell. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 73: 17-43, 1953.
- [9] E. Kausel, J.M. Roesset. Stiffness matrices for layered soils. Bulletin of the Seismological Society of America, 71(6): 1743-1761, 1981.
- [10] S. Nazarian, M.R. Desai. Automated surface wave method: field testing. Journal of Geotechnical Engineering, Proceedings of the ASCE, 119(7): 1094-1111, 1993.
- [11] L. Pyl, G. Degrande. Determination of the Dynamic Soil Characteristics with the SASW Method at a Site in Lincent. Report BWM-2001-02, Department of Civil Engineering, Katholieke Universiteit Leuven, August 2001. STWW Programme Technology and Economy, Project IWT-000152.
- [12] W.T. Thomson. Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21: 89-93, 1950.
- [13] T.P. Williams, N. Gucunski. Neural networks for backcalculation of moduli from SASW test.Journal of Computing in Civil Engineering, Proceedings of the ASCE, 9(1): 1-8, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0026-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.