PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of characteristic length of microstructure for second order continuum multiscale model by Bayesian neural networks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Neural Networks and Soft Computing/International Symposium (30.06-02.07.2005 ; Cracow, Poland)
Języki publikacji
EN
Abstrakty
EN
This-paper deals with the second-order CH of a heterogeneous material undergoing small displacements. Typically, in this approach an RVE of a heterogeneous material is investigated. A given discretized microstructure is determined a priori, without focusing on details of specific discretization techniques. Application of BNN as a tool for identification of characteristic length of a microstructure is discussed. An indentation test was analyzed under plane strain constraints for generating pseudo-experimental patterns by means of FEM. A single input of BNN was formulated due to the application of PCA. The BNN of structure 1-16-1 with sigmoid hidden neurons was designed. The Bayesian inference approach was applied to obtain pdf of the characteristic length. Numerical efficiency of the proposed approach is demonstrated in the paper.
Rocznik
Strony
183--196
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
  • Civil Engineering Department, University of Glasgow Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK
Bibliografia
  • [1] D. Barberd CM. Bishop. Neural networks and machine learning. In: Ensemble Learning in Bayesian Neural Networks, pp. 215-237. Springer, 1998.
  • [2] M.C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1996.
  • [3] J.L. Bucaille, S. Stauss, E. Felder, J. Michler. Determination of plastic properties of metals by instrumented indentation using different sharp indentors. Acta Materialia, 51: 1663-1678, 2003.
  • [4] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Engrg., 192: 3233-3244, 2003.
  • [5] S. Haykin. Neural Networks. A Comprehensive Foundation. Prentice Hall, 1999.
  • [6] Ł. Kaczmarczyk. Numerical Analysis of Multiscale Problems in Mechanics of Heterogeneous Media (in Polish). PhD thesis, Cracow University of Technology, http://www.l5.pk.edu.pl/~likask/phd.html, 2006.
  • [7] Ł. Kaczmarczyk. Thin layer shear and second order homogenization method. Comput. Assisted Mech. Engrg. Sci., 13: 537-546, 2006.
  • [8] V.G Kouznetsova. Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials. PhD thesis, Technische Universiteit Eindhoven, 2002.
  • [9] J. Lampinen, A. Vehtari. Bayesian approach for neural networks. Neural Networks, 14(3): 7-24, 2001.
  • [10] M.E. Tipping. Advanced Lectures on Machine Learning, chapter 'Bayesian inference: an introduction to principles and practice in machine learning', pp. 41-62. Springer, 2004.
  • [11] R. Neal. Software for Flexible Bayesian Modeling and Markov Chain Sampling. http://www.cs.toronto.edu/ radford/fbm.software.html, 2004.
  • [12] J.Y. Shu, W.E. King, N.A. Fleck. Finite element for materials with strain gradient effects. Int. J. Num. Meth. Engrg., 44: 373-391, 1999.
  • [13] A. Truty. On certain classes of mixed and stabilized mixed finite elements formulations for single and two-phase geomaterials. Zesz. Nauk. Polit. Krak., Inż. Śród. No. 48. Cracow Univ. of Technology, Cracow, 2002.
  • [14] Z. Waszczyszyn, L. Ziemiański. Neural networks in the identification analysis of structural mechanics problems. In: Z. Mróz, G. Stavroulakis, eds., Parameter Identification of Materials and Structures, CISM Lecture Notes No. 469, Chapter 7, pp. 265-340. Springer, Wien-New York, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0026-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.