PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the microfibril angle on wood stiffness: a continuum micromechanics approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Polish Conference on Computer Methods in Mechanics (16 ; 21-24.06.2005 ; Częstochowa, Poland
Języki publikacji
EN
Abstrakty
EN
Wood exhibits an intrinsic structural hierarchy. It is composed of wood cells, which are hollow tubes oriented in the stem direction. The cell wall is built up by stiff cellulose fibrils which are embedded in a soft polymer rnatrix. This structural hierarchy is considered in a four-step homogenization scheme, predicting the macroscopic elastic behavior of different wood species from tissue-specific chemical composition and microporosity, based on the elastic properties of nanoscaled universal building blocks. Special attention is paid to the fact that the fibrils are helically wound in the cell wall, at an angle of 0°-30°, generally denoted as microfibril angle. Consideration of this microfibril angle in the continuum micromechanics model for wood is mandatory for appropriate prediction of macroscopic stiffness properties, in particular of the longitudinal elastic modulus and the longitudinal shear modulus. The presented developments can be readily extended to the prediction of poroelastic properties, such as Biot and Skempton coefficients.
Rocznik
Strony
523--536
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Institute for Mechanics of Materials and Structures, Vienna University of Technology Karlsplatz 13/202, 1040 Vienna, Austria
Bibliografia
  • [1] A. Bergander. Local variability in chemical and physical properties of spruce wood fibers. Doctoral Thesis, KTH Stockholm, 2001.
  • [2] A. Bergander, L. Salmen. Variations in transverse fibre wall properties: Relations between elastic properties and structure. Holzforschung, 54: 654-660, 2000.
  • [3] A. Bergander, L. Salmen. Cell wall properties and their effect on the mechanical properties of fibers. Journal of Material Science, 37: 151-156, 2002.
  • [4] J. Bodig, B.A. Jayne. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, New York, USA, 1982.
  • [5] J.D. Boyd, R.C. Foster. Microfibrils in primary and secondary wall growth develop trellis configurations. Canadian Journal of Botany, 53(23): 2687-2701, 1975.
  • [6] I.D. Cave. Theory of X-ray measurement of microfibril angle in wood. Forest Products Journal, 16: 37-42, 1966.
  • [7] I.D. Cave. Theory of X-ray measurement of microfibril angle in wood. Part I. The diffraction diagramm X-ray diffraction by materials with fibre type symmetry. Wood Science and Technology, 37: 225-234, 1997.
  • [8] I.D. Cave, J.C.F. Walker. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Products Journal, 44(5): 43-48, 1994.
  • [9] X. Chateau, L. Dormieux. Micromechanics of saturated and unsaturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 26: 831-844, 2002.
  • [10] W.J. Cousins. Elastic modulus of lignin as related to moisture content. Wood Science and Technology, 10: 9-17, 1976.
  • [11] W.J. Cousins. Young's modulus of hemicellulose as related to moisture content. Wood Science and Technology, 12: 161-167, 1978.
  • [12] L. A. Donaldson. The use of pit apertures as windows to measure microfibril angle in chemical pulp fibres. Wood Fiber Science, 23: 290-295, 1991.
  • [13] S.J. Eichhorn, R.J. Young. The Young's modulus of a microcrystalline cellulose. Cellulose, 8: 197-207, 2001.
  • [14] F. El-Hosseiny, D.H. Page. The measurement of fibril angle of wood fibers using polarized light. Wood Fiber, 5:208-214, 1973.
  • [15] M.L.M. El-Osta, R.W. Wellwood, R.G. Butters. An improved X-ray technique for measuring microfibril angle of coniferous wood. Wood Science, 5(2): 113-117, 1972.
  • [16] H.D. Erickson, T. Arima. Douglas-fir wood quality studies. Part II: Effects of age and stimulated growth on fibril angle and chemical constituents. Wood Science and Technology, 8: 255-265, 1974.
  • [17] J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London, A241: 376-396, 1957.
  • [18] R. Evans. A variance approach to the X-ray diffractometry estimation of microfibril angle in wood. Appita Journal, 52: 283-294, 1999.
  • [19] D. Fengel, G. Wegener. Wood. Chemistry, Ultrastructure, Reactions, de Gruyter, Berlin, 1989.
  • [20] M. Fioravanti. The influence of age and growth factors on microfibril angle in wood. In: Proceedings of the 1st Conference of the European Society of Wood Mechanics, 127-134, 2001.
  • [21] L.J. Gibson, M.F. Ashby. Cellular Solids. Structure and Properties. Cambridge University Press, Cambridge, UK, second edn., 1997.
  • [22] J. Hafren, T. Fujimo, T. Itoh. Changes in the cell wall architecture of differentiating tracheids of pinus thunbergii during lignification. Plant and Cell Physiology, 40(5): 532-541, 1999.
  • [23] H. Harada. Cellular ultrastructure of woody plants. In: W.A. Cote, ed., Ultrastructure and organization of gymnosprem cell walls, 215-233. Syracuse University Press, Syracuse, 1965.
  • [24] Ch. Hellmich, J.-F. Barthelemy, L. Dormieux. Mineral-collagen interactions in elasticity of bone ultrastructure - a continuum micromechanics approach. European Journal of Mechanics A/Solids, 23: 783-810, 2004.
  • [25] Ch. Hellmich, F.-J. Ulm. Micromechanical model for ultrastructural stiffness of mineralized tissues. Journal of Engineering Mechanics (ASCE), 128(8): 898-908, 2002.
  • [26] Ch. Hellmich, F.-J. Ulm. Drained and undrained poroelastic properties of healthy and pathological bone: A poro-micromechanical investigation. Transport in Porous Media, 58(3): 243-268, 2005.
  • [27] CH. Hiller. Correlation of fibril angle with wall thickness of tracheids in summerwood of slash and loblolly pine. Tappi, 47(2): 125-128, 1964.
  • [28] K. Hofstetter, Ch. Hellmich, J. Eberhardsteiner. Develpoment and experimental validation of a continuum micromechanics model for the elasticity of wood. European Journal of Mechanics A/Solids, 24: 1030-1053, 2005.
  • [29] K. Hofstetter, Ch. Hellmich, J. Eberhardsteiner. Wood strength properties predicted from microstructure and composition: a continuum micromechanics approach. European Journal of Mechanics A/Solids, 2006. Submitted for publication.
  • [30] H.F. Jakob, P. Fratzl, S.E. Tschegg. Size and arrangement of elementary cellulose fibrils in wood cells: A Small-Angle X-Ray Scattering study of Picea Abies. Journal of Structural Biology, 113: 13-22, 1994.
  • [31] S. Khalili, T. Nilsson, G. Daniel. The use of soft rot fungi for determining the microfibrillar orientation in the s2 layer of pine tracheids. Holz als Roh- und Werkstoff, 58: 439-447, 2001.
  • [32] F. Kollmann, W. Cote. Principles of Wood Science and Technology, Vol. 1. Springer Verlag, Berlin, Heidelberg, New York, 1968.
  • [33] H. Lichtenegger, A. Reiterer, S.E. Stanzl-Tschegg, P. Fratzl. Variation of cellulose microfibril angles in softwoods and hardwoods - a possible strategy of mechanical optimization. Journal of Structural Biology, 128: 257-269, 1999.
  • [34] R.E. Mark. Cell wall mechanics of tracheids. Yale University Press, New Haven, USA, 2 edn., 1967.
  • [35] R. Marton, S.D. McGovern. Relation of the crystallite dimensions of fibrillar orientation to fiber properties. In: The physics and chemistry of wood pulp fibers, 153-158. Tappi stap No. 8, 1970.
  • [36] P.J. Ollinmaa. Reaktiopuututkimuksai. Acta Forestalia Fennica, 72, 1961.
  • [37] A. Reiterer, H.F. Jakob, S.E. Tschegg, P. Fratzl. Spiral angle of elementary cellulose fibrils in cell walls of picea abies determined by small-angle X-ray scattering. Wood Science and Technology, 43(5): 335-345, 1998.
  • [38] A. Reiterer, H. Lichtenegger, S. Tschegg, P. Fratzl. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine A, 79(9): 2173-2184, 1999.
  • [39] J.F. Senft, B.A. Bendtsen. Measuring microfibrillar angles using light microscopy. Wood Fiber Science, 17:564-567, 1985.
  • [40] P. Suquet, ed. Continuum Mircomechanics. Springer Verlag, Wien, New York, 1997.
  • [41] R.C. Tang. The microfibrillar orientation in cell-wall layers of Virginia pine tracheids. Wood Science and Technology, 5: 181-186, 1973.
  • [42] K. Tashiro, M. Kobayashi. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer, 32(8): 1516-1526, 1991.
  • [43] WHB. Wood Handbook. Forest Products Society, USA, 1999.
  • [44] H. Yamamoto, Y. Kojima, T. Okuyama, W.P. Abasolo, J. Gril. Origin of the biomechanical properties of the fine structure of the multi-layered cell wall. Journal of Biomechanical Engineering (ASME), 124: 432-440, 2002.
  • [45] R.J. Young, P.A. Lovell. Introduction to Polymers. Chapman & Hall, London, 2 edn., 1991.
  • [46] A. Zaoui. Structural morphology and constitutive behavior of microheterogeneous materials. In: P. Suquet, ed., Continuum Micromechanics, 291-347. Springer Verlag, Wien, New York, 1997.
  • [47] A. Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE), 128(8): 808-816, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0025-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.