PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimality of grids based on a combined r-h adaptive strategy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A critical review of earlier works on optimality of finite element grids has been made. A material force method of r-adaption to obtain optimal initial grids has been described. The study focuses on determining the configurational driving force and its convergence rate across an interior patch node for one-dimensional linear, quadratic element and two-dimensional bilinear quadrilateral elements. Numerical implementation is made on one and two-dimensional problems. Various aspects considered to define optimality in earlier works along with their predefined guidelines have also been worked out with some modifications for the material force method and it is shown that this method of adaption provides good optimal grids. The method is advantageous owing to its physical basis and mathematical vigor than earlier works. Based on the numerical studies conducted a combined adaptive strategy incorporating node disposition and mesh enrichment has been evolved to obtain an optimal mesh for a specified accuracy
Rocznik
Strony
247--268
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • [1] H. Askes, A. Rodriguez-Farran. An r-h adaptive strategy based on domain subdivision and error assessment. Civil-Comp Press, Edinburgh, 95-102, 2000.
  • [2] M. Braun. Configurational forces induced by Finite element discretization. Proc. Estonian Acad. Sci. Phys. Math., 46 (1/2): 24-31. 1997.
  • [3] W. E. Carol. Inclusive Criteria for Optimum Grid Generation in the Discrete Analysis Technique. Computers and Structures, 6(4-5): 333-337, 1976.
  • [4] W. E. Carol, R. M. Baker. A Theorem of Optimum Finite Element Idealizations. I. J. of Solids and Structures, 9(7): 883-895, 1973.
  • [5] G. F. Carey. A Mesh Refinement Scheme for Finite Element Computations. Computer Methods in Applied Mechanics and Engineering, 7(1): 93-105, 1976.
  • [6] A.R. Diaz, N. Kikuchi, J.E. Taylor. A Method of Grid Optimization for Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 41: 29-45, 1983.
  • [7] J.D. Eshelby. The Elastic Energy-Momentum Tensor. J. of Elasticity, 5(3-4): 321-335. 1975.
  • [8] C. A. Felippa. Optimization of the Finite Element Grids by Direct Energy Search. Applied Mathematical modeling, 1: 93-96, 1976.
  • [9] C. A. Felippa. Numerical Experiments in Finite Element Grid Optimization by Direct Energy Search. Applied Mathematical Modeling, 1: 239-244, 1977.
  • [10] F. J. Fuenmayor, J. L. 01iver. Criteria to Achieve Nearly Optimal Meshes In h-Adaptive Finite Element Method./. J. of Numerical Methods in Engineering, 39: 4039-4061, 1996.
  • [11] R. Gangadharan, A. Rajagopal, S. M. Sivakumar. An r-h Adaptive Strategy Based on Material Forces and Error Assessment. Computers Materials and Continua, 1(3): 229-244, 2004.
  • [12] M.E. Gurtin, P. PodioGuidugli. On Configurational Inertial Forces at a Phase Interface. J. of Elasticity, 44:255-269, 1996.
  • [13] T. S. Hsu, S. K. Saxena. New Guidelines for Optimization of Finite Element Solutions. Computers and Structures, 31(2): 203-210, 1989.
  • [14] Jung-ho Cheng. Adaptive Gird Optimization for Structural Analysis-Geometry Based Approach. Computer Methods in Applied Mechanics and Engineering, 107: 1-22, 1993.
  • [15] A. Kazberuk, R. T. Miedziałowski. Finite Element Discretization by Minimization of Elastic Strain Energy Method. Finite elements in Analysis and Design, 32: 63-70, 1990.
  • [16] R. Kienzler, G. Herrmann. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer Verlag, NY, 2000.
  • [17] N. Kikuchi. Adaptive Grid Design Methods for Finite Element Analysis. Computer Methods in Applied Mechanics and Engineering, 55: 129-160, 1986.
  • [18] G. K. Madan, R. L. Huston. Finite Element Mesh Refinement Criteria for Stress Analysis. Computers and Structures, 34(2): 251-255, 1990.
  • [19] G. K. Madan, L. H. Ronald, B. F. Oswald. Finite element gird improvement by minimization of stiffness matrix trace. Computers and structures, 31(6): 891-896, 1989.
  • [20] E. F. Masur. Some Remarks on Optimal Choice of Finite Element Grids. Computer Methods in Applied Mechanics and Engineering, 14: 237-248, 1978.
  • [21] G. A. Maugin. Material forces Concepts and applications. Applied Mechanics Review, 48(5): 213-245, 1995.
  • [22] G. A. Maugin. Material Mechanics of Materials. Theoretical and Applied Mechanics, 27: 1-12, 2002.
  • [23] R. J. Melosh, P. V. Marcal. An Energy Basis for Mesh Refinement of Structural Continua. /. J. of Numerical Methods in Engineering, 11(7): 1083-1092, 1977.
  • [24] R. Muller, G. A. Maugin. On Material Forces and Finite Element Discretization. Computational mechanics, 29: 52-60, 2002.
  • [25] R. Muller, S. Kolling, D. Gross. On configurational forces in the context of the finite element method. /. J. for Numerical Methods in Engineering, 53: 1557-1574, 2002.
  • [26] J.L. 01iver, F. J. Fuenmayor. Criteria to Achieve Nearly Optimal Meshes in the h-Adaptive Finite Element Method. /. J. of Numerical Methods in Engineering, 39: 4039-4061, 1996.
  • [27] W. Prager. A Note on Optimal Choice of Finite Element Grids. Computer Methods in Applied Mechanics and Engineering, 6(3): 363-366, 1975.
  • [28] J. Perarire, J. Perio, K. Morgan. Adaptive Remeshing for Three Dimensional Compressible Flow Computation. Journal of Computational Physics, 103: 269-285, 1992.
  • [29] Pierre Beal, J. Kokko, R. Touzani. Mesh r-adaption for unilateral contact problems. /. J. of Applied Mathematics and computer science, 12: 9-16, 2002.
  • [30] P. PodioGuidugli. Configurational forces are they needed. Mechanics research Communications, 29: 513-519, 2002.
  • [31] A. Rajagopal, R. Gangadharan, S. M. Sivakumar. A performance study on Confiurational force and Spring analogy Based Mesh optimization schemes. Int. J. of Computational Methods in Engineering Science and Mechancis (accepted for publication), January 2005.
  • [32] D. Scott McRae. R-Refinement Grid Adaptation Algorithms and Issues. Computational Methods in Applied Mechanics and Engineering, 189: 1161-1182, 2000.
  • [33] M. S. Shepherd, R. H. Gallagher, J. F. Abel. The Synthesis Of Near Optimum Meshes With Interactive Computer Graphics. /. J. of Numerical Methods in Engineering, 15(7): 1021-1039, 1980.
  • [34] M.S. Shepherd. An algorithm for defining a single near-optimum mesh for multiple load case problems. /. J. of Numerical Methods in Engineering, 15(4): 617-625, 1980.
  • [35] J.W. Tang, D. J. Turcke. Characteristics of the Optimal Grids. Computer Methods in Applied Mechanics and Engineering, 11(1): 31-37, 1977.
  • [36] D. J. Turcke, G. M. McNeice. Guidelines for selecting finite element girds based on an optimization study. Computers and Structures, 4(3): 499-519, 1974.
  • [37] P. Thoutireddy, M. Ortiz. Variational Mesh and Shape Optimization. Fifth World Congress on Computational Mechanics, July 7-12, Vienna, 2002.
  • [38] J.F. Thompson, B.K. Soni, N. P. Weatherill. Handbook of Grid generation. CRC press, 1999.
  • [39] E. R. 01iveria Taratntes. Optimization of finite element solutions. Proceedings of 3rd Int. Conf. On Matrix Methods in Structural Mechanics, Ohio, October 1971.
  • [40] O. C. Zienkiewicz, J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis./. J. of Numerical Methods in Engineering, 24: 337-357, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0019-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.