PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shaping the stiffest three-dimensional structures from two given isotropic materials.

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns layout optimization of elastic three dimensional bodies composed of two isotropic materials of given amount. Optimal distribution of the materials corresponds to minimization of the total compliance or the work of the given design-independent loading. The problem is discussed in its relaxed form admitting composite domains, according to the known theoretical results on making the minimum compliance problems well posed. The approach is based upon explicit formulae for the components of Hooke's tensor of the third rank stiff two material composites. An appropriate derivation of these formulae is provided. The numerical algorithm is based on COC concept, the equilibrium problems being solved by the ABAQUS system. Some of the optimal layouts presented compare favourably with the known benchmark solutions. The paper shows how to use commercial FEM codes to find optimal composite designs within linear elasticity theory.
Rocznik
Strony
53--83
Opis fizyczny
Bibliogr. 37 poz., il., rys., wykr.
Twórcy
autor
autor
  • Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
  • [1] ABAQUS/Standard, User's Manuał, Version 6.2, Vols. I, III. Hibbitt, Karlsson & Sorensen, Inc. 2001.
  • [2] G. Allaire. Shape Optimisation by the Homogenisation Method. Springer , New York 2002.
  • [3] G. Allaire, E. Bonnetier, G. Francfort, F. Jouve. Shape optimisation by the homogenisation method. Numerische Mathematik. 76: 27-68, 1997.
  • [4] G. Allaire, R.V. Kohn. Optimal design for minimum weight and compliance in plane stress using extremal microstructures. European Journal of Mechanics A/Solids. 12: 839-878, 1993.
  • [5] M. Beckers. Optimization de structures en uariable discretes, These de doctorat. Faculte des Sciences Appliquées, Universite de Liege, 1997.
  • [6] M.P. BendsØe. Optimization of Structural Topology, Shape and Materiał. Springer, Berlin, 1995.
  • [7] M.P. Bendsoe, O. Sigmund. Material interpolation schemes in topology optimization. Archives of Applied Mechanics, 69: 635-654, 1999.
  • [8] T. Borrvall, J. Petersson. Large-scale topology optimization in 3D using parallel computing. Computer Methods in Applied Mechanics and Engineering, 190: 6201-6229, 2001.
  • [9] A. Cherkaev. Variational methods for structural optimization. Springer, New York 2000.
  • [10] S. Czarnecki, G. Dzierżanowski, T. Lewiński. Two-phase topology optimization of plates and three-dimensional bodies. Proc. 5th World Congress of Structural and Multidisciplinary Optimization, CD-ROM, Lido di Jesolo.Venice, Italy, 19-23 May 2003.
  • [11] S. Czarnecki, G. Dzierżanowski, T. Lewiński, J.J. Telega. Topology optimization of shells and surface Michell structures. Proc. 5th World Congress of Structural and Multidisciplinary Optimization, CD-ROM, Lido di Jesolo, Venice, Italy, 19-23 May 2003.
  • [12] S. Czarnecki, T. Lewiński. Optimal layouts of a two-phase isotropic materiał in thin elastic plates. In: Z. Waszczyszyn, J. Pamin, eds., Proc. 2nd European Conference on Computational Mechanics, ECCM-2001, CD-ROM, Cracow, 26-29 June 2001.
  • [13] S. Czarnecki, T. Lewiński. Computational shaping of the least compliant two-phase three-dimensional bodies. In: T. Burczyński, ed., 15th Int. Conference on Computer Methods in Mechanic, CD-ROM, Gliwice-Wisła, 3-6June 2003.
  • [14] A. Diaz, R. Lipton. Optimal material layout for 3D elastic structures. Structural Optimization, 13: 60-64, 1997.
  • [15] G. Dzierżanowski. Shape design of shallow shells made of isotropic incompressible material In: W. Pietraszkiewicz, C. Szymczak, eds., Shell Structures: Theory and Applications. Proc. of the 8th SSTA Conference, Gdańsk-Jurata, October 12-14, 2005, 101-104. Taylor & Francis / Balkema, London 2005.
  • [16] G. Dzierżanowski, T. Lewiński. Layout optimization of two isotropic materials in elastic shells.Journal of Theoretical and Applied Mechanics, 41: 459-472, 2003.
  • [17] G. Dzierżanowski, T. Lewiński. Lower bound on the complementary energy potential in shape optimization problem of shallow shells. In: W. Pietraszkiewicz, C. Szymczak, eds., Shell Structures: Theory and Applications. Proc. of the 8th SSTA Conference, Gdańsk-Jurata, October 12-14, 2005, 105-109. Taylor & Francis / Balkema, London 2005.
  • [18] H.A. Eschenauer, N. Olhoff. Topology optimization of continuum structures: A review. Applied Mechanics Reviews, 54: 331-389, 2001.
  • [19] G.A. Francfort, F. Murat. Homogenization and optimal bounds in linear elasticity. Archives of Rational Mechanics and Analysis, 94: 307-334, 1986.
  • [20] G.A. Francfort, F. Murat, L. Tartar. Fourth-order moments of nonnegative measures on S2 and applications. Archives of Rational Mechanics and Analysis. 131: 305-333, 1995.
  • [21] L.V. Gibiansky, A.V. Cherkaev. Designing composite plates of extremal rigidity. In: Fiziko-Tekhnichesk. Inst. Im. A.F. Ioffe. AN SSSR, 1984, preprint No 914. Leningrad (in Russian). English translation in: A.V. Cherkaev, R.V. Kohn, eds., Topics in the Mathcmatical Modelling of Composite Materials. Birkhauser, Boston 1997.
  • [22] L.V. Gibiansky, A.V. Cherkaev. Microstriictures of elastic composites of extremal stiffness and exact estimates of the energy stored in them. In: Fiziko-Tekhnichesk. Inst. Im. A.F. Ioffe. AN SSSR, 1987, preprint No 1115, pp. 52, Leningrad (in Russian). English translation in: A.V. Cherkaev, R.V. Kohn, eds., Topics in the Mathcmatical Modelling of Composite Materials. Birkhauser, Boston 1997.
  • [23] J.B. Jacobsen, N. Olhoff, E. Ronholt. Generalized shape optimization of three-dimensional structures using materials with optimum microstructures. Mechanics of Materials, 28: 207-225, 1998.
  • [24] S. Jemioło, A. Szwed. Application of convex isotropic functions in failure theory for isotropic materials. Field criteria for metals (in Polish). Prace Naukowe Politechniki Warszawskiej. Budownictwo, z. 133, pp. 5-51, 1999.
  • [25] R.V. Kohn. Recent progress in the mathematical modeling of composite materials. In: G.C. Sih, G.F. Smith, I.H. Marshall, J.J. Su, eds., Proc. of a Workshop on Composite Material Response: Constitutive Relations and Damage Mechanisms, 29 pp.. Glasgow, 1987.
  • [26] L.A. Krog, N. Olhoff. Topology and reinforcement layout optimization of disk, plate and shell structures. In: G.I.N. Rozvany, ed., Topology Optimization in Structural Mechanics, pp. 237-322. Springer, Wien-New York, 1997.
  • [27] R. Kutyłowski. Optimization of Topology of Material Continuum, pp. 216 (in Polish). Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2004.
  • [28] T. Lewiński, J.J. Telega. Plates, Laminates and Shells. Asymptotic Analysis and Homogenization. World Scientific. Series on Advances in Mathematics for Applied Sciences, vol. 52. Singapore-New Jersey-London-Hong Kong, 2000.
  • [29] R. Lipton. On a saddle-point theorem with application to structural optimization. Journal of Optimization Theory and Applications, 81: 549-568, 1994.
  • [30] I. Marczewska, W. Sosnowski, A. Marczewski, T. Bednarek. Topology and sensitivity-based optimization of stiffened plates and shells. Proc. 5th World Congress of Structural and Multidisciplinary Optimization, CD-ROM, Lido di Jesolo, Venice, Italy, 19-23 May 2003.
  • [31] M.M. Mehrabadi, S.C. Cowin. Eigentensors of linear anisotropic elastic materials. Quarterly Journal of Mechanics and Applied Mathematics, 43: 15-41, 1990.
  • [32] G. Milton. Theory of Composites. Cambridge University Press, Cambridge, 2002.
  • [33] G.W. Milton, A.V. Cherkaev. What elasticity tensors are realizable? Journal of Engineering Materials and Technology, 117: 483-493, 1995.
  • [34] H. Ohmori, C. Cui. Computational morphogenesis by extended ESO method for 3-dimensional structures. Proc. of the international IASS symposium on Lightweight Structures in Civil Engineering, pp. 410-415, Warsaw, Poland, 24-28 June 2002.
  • [35] N. Olhoff, E. Ronholt, J. Scheel. Topology optimization of three-dimensional structures using optimum microstructures. Structural Optimization, 16: 1-18, 1998.
  • [36] J. Rychlewski. Unconventional approach to linear elasticity. Archives of Mechanics, 47: 149-171, 1995.
  • [37] Z. Wasiutyński et al. Optimization with respect to the minimum of potential and maximum of stiffness and minimum of flexibility (in Polish).In: A.M. Brandt, ed., Criteria and Methods of Optimization of Structures, pp 20-30. Polish Scientific Publ., Warsaw 1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0017-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.