PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental assessment of the drag coefficient during butterfly swimming in hydraulic flume

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A body when moving in a fluid is to withstand drag that is proportional to the drag coefficient, the frontal surface area, and the square of the body velocity relative to the fluid velocity (VOGEL [14]). The aim of our study was to determine the relationships between the drag coefficient (CD) and the Reynolds number (Re) for a high-level swimmer. In TAIAR et al. [12], three most propulsive butterfly positions have been defined: the end of the external sweep (beginning of the cycle), the end of the internal sweep (middle of the cycle), and the end of the thrust (end of the cycle). These three positions were reproduced using real-size mannequins articulated ui real-velocity conditions. Experiments have been done ui the large-scale hydraulic flume of the University' of Nantes. Two types of the curves CD (Re) were obtained: for the "best swimmer" and for ''other swimmers". Following the swimming of the ex-word champion Pankratov during the World Championship m Rome (1994) the mannequin representing the "best swimmer" has been positioned similarly to the ex-world champion at the beginning, in the middle and at the end of cycle. The body positions of Pankratov have been obtained using the image analysis software Schleihaui 4.0. In order to obtain the curves CD (Re) representing "other swimmers", the body positions of lower-level swimmers have been used at the beginning, in the middle and at the end of swimming cycle. The two types of curves show well the gap between the techniques of the "best swimmer" and "other swimmers". Our study shows the importance of the body position dining the swimming cycle to minimizing the drug and to assuring better propulsion, i.e. better performance. The results show that the most effective swimmers optimise the body positions in order to reduce the frontal surface and therefore to minimize the drag.
Słowa kluczowe
Rocznik
Strony
98--108
Opis fizyczny
Bibliogr. 15 poz.,il., wykr.
Twórcy
autor
  • Laboratory for Analysis of Mechanical Constraints (LACM), UFRSTAPS, University of REIMS, France
autor
  • Laboratory for Analysis of Mechanical Constraints (LACM), UFRSTAPS, University of REIMS, France
  • Laboratory for Analysis of Mechanical Constraints (LACM), UFRSTAPS, University of REIMS, France
autor
  • Laboratory for Analysis of Mechanical Constraints (LACM), UFRSTAPS, University of REIMS, France
autor
  • Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Bibliografia
  • [1] BLAKE R.W., Fish locomotion, University Press, 1983, Cambridge, 208 p.
  • [2] CLARYS J.P., Human morphology and hydrodynamics, [in:] International series on sport sciences swimming III, edited by Juris Terauds and E. Wendy Bedinfield, University Park Press, Baltimore, 1979.
  • [3] GUYON E., HULIN J.P., PETIT L., Hydrodynamics physique, CNRS, Paris, 1991, p. 506.
  • [4] HOERNER S.F., Résistance à l'avancement dans des fluides, Traduit par Henry F.M., eds Gauthier Villars, Paris, 1965, 471 p.
  • [5] KOLMOGOROV S.V., RUMYANTSEVA O.A., GORDON B.J., CAPPAERT J.M., Hydrodynamic characteristics of competitive swimmers of different genders and performance levels, J. Applied. Biomechanics, 1997, 13, 88–97.
  • [6] RHYMING I.L., Dynamique des fluides, Presses polytechniques romandes, Lausanne, 1985, 448 p.
  • [7] SAGNES. P., Un outils de prise de données sur une image numérisée et son utilité dans les études relatives aux poisson: exemple d'une application concrète en morphométrie, Bull. Fr. Pêche Piscic, 1995, 339, 131–137.
  • [8] SCHLEIHAUF R.E., Kinematic analysis software for three dimensional data handbook (KA Software, Version 4.0), 1994.
  • [9] SCHLICHTING H., GERSTEN K., Boundary-Layer Theory, 8th revised and enlarged edition, SpringerVerlag, Berlin, 2000.
  • [10] SHEEHAN D., LAUGHRIN D.M., Device for quantitative measurement of hydrodynamic drag on swimmers, Journal of Swimming Reasearch, 1992, 8, 30–33.
  • [11] TAÎAR R., SAGNES P., HENRY C., DUFOUR A.B., ROUARD A.H., Hydrodynamics optimization in butterfly swimming: position, drag coefficient and performance, Journal of Biomechanics, 1999, 32, 803–810.
  • [12] TAÏAR R., ROUARD A., TOSHEV Y., Performance modelling of butterfly swimmers: links between morphometric, kinematic and hydrodynamic variables, Acta of Bioengineering and Biomechanics, 2004, 6, 2, 77–88.
  • [13] VOGEL S., Life in moving fluids. The physical biology of flow, Willard Grant Press, Boston, 1981, 352 p.
  • [14] VOGEL S., Life moving fluids, 2nd edn., Princeton, New Jersey, 1994, Princeton University.
  • [15] WEBB P.W., Hydrodynamics and energetics of fish propulsion, Bull. Fish Res. Board Can., 1975, 190, 1–160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0016-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.