PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-dimensional nonlinear finite element model of lumbar intervertebral disc

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study is to model a three-dimensional nonlinear finite-element vertebra disc, which can be used in further simulation of human lumbar spinal segments in surgery, analyses of spinal equilibrium and stability. Because of complexity of modelling it is proposed to cary* out analyses on the simplified model built in such a way that the nonlinear response of the disc is replaced by a spring-type behaviour whose characteristics are obtained by computer simulations of an isolated disc. The geometry data of a human lumbar spinal segment, including a disc, is acquired from the computer tomography or magnetic nuclear resonance measurements, and a CAD model is designed and imported into FEA program. The simplified model was validated for loading schemes, including axial compression, bending and torsion acting on the spinal L4-L5 segment. Two models of intervertebra disc are shown and theirs advantages and accuracy are discussed.
Słowa kluczowe
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 23 poz., il., rys., tab.
Twórcy
  • Institute of Structural Engineering, Poznań University of Technology, Piotrowo 5, 60-965 Poznań
autor
  • Institute of Structural Engineering, Poznań University of Technology, Piotrowo 5, 60-965 Poznań
  • Institute of Structural Engineering, Poznań University of Technology, Piotrowo 5, 60-965 Poznań
  • Department of Biomechanics, University School of Physical Education, Królowej Jadwigi 27/35, 61-871 Poznań
Bibliografia
  • [1] ADAMS M.A., BOGDUK N., BURTON K., DOLAN P., The Biomechanics of Back Pain, Elsevier Science Limited, Churchill Livingstone, 2002.
  • [2] BĘDZIŃSKI R., Biomechanika inżynierska, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1997.
  • [3] DIETRICH M., KĘDZIOR K., WITTEK A., ZAGRAJEK T., Non-Linear Finite Element Analysis of Formation and Treatment of Intervertebral Disc Herniae, Proc. Inst. Mech. Eng., 1992, pp. 225–31.
  • [4] EBERLEIN R., HOLZAPFEL G.A., SCHULZE-BAUER C.A.J., Assessment of a Spinal Implant by Means of Advanced FE Modeling of Intact Human Intervertebral Discs, Fifth World Congress on Computational Mechanics, Vienna, 2002.
  • [5] GOEL V.K., KIMY E., LIM T.H., An analytical investigation of the mechanics of spinal instrumentation, Spine, 1988, 13, pp. 1003–1011.
  • [6] KĄKOL W., ŁODYGOWSKI, T., OGURKOWSKA M.B., WIERSZYCKI M., Are we able to support medical diagnosis or rehabilitation of human vertebrea by numerical simulation? 15th Int. Conf. on Computer Methods in Mechanics, June 3–6, 2003, Gliwice, Poland.
  • [7] KIM Y.E., CHO S.Y., CHOI H.Y., Analysis of Dural-SAC Occlusion in a Lumbar Spinal Motion Segment FE Model, Journal of Musculoskeletal Research, 2001, Vol. 5, No. 4, pp. 243–252.
  • [8] LIM T.-H., GOEL V.K., WEINSTEIN J.N., Stress Analysis of a Canine Spinal Motion Segment Using the Finite Element Technique, J. Biomech., 1994, Vol. 27, pp. 1259–1269.
  • [9] LU Y.M., HUTTON W.C., GHARPURAY V.M., Can Variations in Intervertebral Disc Height Affect the Mechanical Function of the Disc? Spine, 1996, Vol. 21, No. 19, pp. 2208–2217.
  • [10] NEIL J.L., DEMOS T.C., Tensile and Compressive Properties of Vertebral Trabecular Bone, Trans. 29 th Orthop. Res. Soc., 1983, 8, pp. 344.
  • [11] OGURKOWSKA M.B., Application of radiology and rheology method for mechanical testing of the vertebral column, PhD Thesis, University School of Physical Education, Poznań, 1992.
  • [12] OGURKOWSKA M.B., Variation of the vertebral body strength with sampling position in a vertebral body for L1–L5, Journal of Biomechanics (submitted for publication).
  • [13] OGURKOWSKA M.B., RYCHLIK M., STANKIEWICZ W., NOWAK M., ROSZAK R., GLEMA A., WIERSZYCKI M., MORZYŃSKI M., ŁODYGOWSKI T., The interaction of the L4–L5 spinal segments by FEM analysis. Part 1. Methods of geometrical data acquisition and validation, Acta of Bioengineering and Biomechanics, 13th Conference of the European Society of Biomechanics, 2002, Vol. 4, Supp. 1, Wrocław, Poland, pp. 98–99.
  • [14] OGURKOWSKA M.B., RYCHLIK M., STANKIEWICZ W., NOWAK M., ROSZAK R., GLEMA A., WIERSZYCKI M., MORZYŃSKI M., ŁODYGOWSKI T., The interaction of the L4–L5 spinal segments by FEM analysis. Part 2. Virtual modeling of the structure, Acta of Bioengineering and Biomechanics, 13th Conference of the European Society of Biomechanics, 2002, Vol. 4, Supp. 1, Wrocław, Poland, pp. 98–99.
  • [15] RAO A.A., DUMAS G.A., Influence of Materials Properties on the Mechanical Behavior of the L5–S1 Intervertebral Disc in Compression: A Nonlinear Finite Element Study, J. Biomed. Eng., 1991, Vol. 13, pp. 139–151.
  • [16] RYCHLIK M., MORZYŃSKI M., NOWAK M., STANKIEWICZ W., 􀃠ODYGOWSKI T., OGURKOWSKA M., Acquisition and transformation of biomedical objects to CAD systems, Strojnicky Casopis, 2004, Vol. 55, No. 3, Bratislava, pp. 121–135.
  • [17] SKAGGS D.L., WEIDENBAUM M., Regional variation in tensile properties and biomechanics composition of the human lumbar annulus fibrous, Spine, 1994, Vol. 9, pp. 120–134.
  • [18] SKIRAZE-ADL A. et al., Stress analysis of the lumbar disc-body unit in compression: a threedimensional nonlinear finite element study, Spine, 1984, Vol. 9, pp. 120–134.
  • [19] STANKIEWICZ W., ROSZAK R., Generation of the CAD models based on NMR measurements of human tissues (in Polish), Zeszyty Naukowe Politechniki Poznańskiej, 2001, No. 53, pp. 47–52.
  • [20] SUWITO W., KELLER T.S., Geometric and material property study of the human lumbar spine using the finite element method, J. Spinal Disord., 1992, Vol. 5, pp. 50–59.
  • [21] SWATRZ D.E., WITTENBERG R.H., Physical and mechanical properties of calf lumbosacral trabecular bone, J. Biomechanics, 1991, Vol. 24, No. 11, pp. 1059–1068.
  • [22] TEO E.C., NG H.E., Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method, Medical Engineering & Physics, 2001, Vol. 23, pp. 155–164; Elsevier Science Ltd.
  • [23] ZIENKIEWICZ O.C., TAYLOR R.L., The Finite Element Method, Butterwoth Heinemann, Oxford, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0016-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.