PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the numerical prediction of the anisotropic elastic properties in thin-walled structures madę from short-fiber reinforced plastics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a model which allows to estimate the elastic properties of thin-walled structures manufactured by means of injection molding. The starting point is the numerical prediction of the microstructure of a short fiber reinforced composite induced during the filling stage of the manufacturing process. For this purpose the commercial program Moldflow Plastic InsightŽ (MPI) is used. The result of the filling simulation characterizing the fiber microstructure is a second rank orientation tensor. The elastic material properties after the processing are locally dependent on the orientational distribution of the fibers. The constitutive model is formulated by means of the orientational averaging for the given orientation tensor. The tensor of elastic material properties is computed and translated into the format suitable for the stress-strain analysis based on the ANSYSŽ finite element code. The influence of technological manufacture parameters on the microstructure and the elastic properties is discussed with the help of two examples a center-gated disk and a shell of revolution.
Rocznik
Strony
329--339
Opis fizyczny
Bibliogr. 23 poz.,rys., tab., wykr.
Twórcy
autor
  • Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
autor
  • Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
autor
  • Otto-von-Guericke Universitat, Graduiertenkolleg "Mikro-Makro-Wechselwirkungen in strukturten Medien und Partikelsystemen, Magdeburg, Germany
Bibliografia
  • [1] S. G. Advani, C. L. Tucker. The use of tensors to describe and predict fiber orientation in short fibers composites. J. Rheol. 31(48): 751-784, 1987.
  • [2] M. C. Altan, S. Subbiah, S. I. Giiceri, R. B. Pipes. Numerical prediction of three-dimensional fiber orientation in hele-shaw flows. Polym. Eng. Sci. 30(14): 848-859, 1990.
  • [3] H. Altenbach, K. Naumenko, G. I. Lvov, S. N. Pylypenko. Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mechanics of Composite Materials 39(3): 221-234, 2003.
  • [4] H. Altenbach, K. Naumenko, P. Zhilin. A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mechanics and Thermodynamics 15: 539-570, 2003.
  • [5] J. Altenbaeh, H. Altenbach. Einführung in die Kontinuumsmechanik. Teubner Studienbücher Mechanik. Teubner, Stuttgart, 1994.
  • [6] G. K. Batchelor. The stress system in a suspension of force free particles. J. Fluid Mech. 41: 545-570, 1970.
  • [7] R. S. Bay, C. L. Tucker. Fiber orientation in simple injection moldings. part 2: experimental results. Polym. Comp. 13: 332-341, 1992.
  • [8] S. T. Chung, T. H. Kwon. Numerical simulation of fiber orientation in injection molding of short-fiber reinforced thermoplastics. Polym. Eng. Sci. 35(7): 604-618, 1995.
  • [9] S. M. Dinh, R. C. Armstrong. A rheological equation of state for semiconcentrated fiber suspensions. J. Rheol. 28(3): 207-227, 1984.
  • [10] M. Doi, S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, Oxford et al., 1988.
  • [11] F. Dupret, A. Couniot, O. Mai, L. Vanderschuren, O. Verhoyen. Modeling and simulation of injection molding. In: D. A. Siginer, D. D. Kee, R. P. Chhabra, eds. Advances in the Flow and Rheology of Non-Newtonian Fluids, pages 939-1010. Elsevier, Amsterdam et al., 1999.
  • [12] F. Dupret, Y. Verleye. Modelling of the flow of fiber suspensions in narrow gaps. In: D. A. Siginer, D. D. Kee, R. P. Chhabra, eds. Advances in the Flow and Rheology of Non-Newtonian Fluids, pages 1347-1398. Elsevier, Amsterdam et al., 1999.
  • [13] S. Glaser, K. v. Diest. Berechnungsverfahren für GFK-Bauteile. Kunststoffe. 88(4): 537-542, 1988.
  • [14] R. P. Hegler. Faserorientierung beim Verarbeiten kurzfaserverstärkter Thermoplaste. Kunststoffe. 74: 271-277, 1984.
  • [15] R. R. Huilgol, N. Phan-Thien. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam et al., 1997.
  • 116] G. B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, A 102: 161-179, 1922.
  • [17] W. Michaeli. Plastics Processing. Hanser, Munich et al., 1995.
  • [18] C. J. S. Petrie. The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech. 87: 369-402, 1999.
  • [19] M. Saito, S. Kukula, Y. Kataoka, T. Miyata. Practical use of statistically modified laminate model for injection moldings. Material Science and Engineering. A285: 280-287, 2000.
  • [20] E. Schmachtenberg, N. M. Yazici, O. Schröder. Untersuchung des Langzeitverhaltens von Pumpenbauteilen aus Kunststoff. Abschlußbericht, AIF Forschungsvorhaben, Auftraggeber: WILO GmbH Dortmund, Universität Essen, Institut für Kunststofftechnik und Kunststoffmaschinen, 2000.
  • [21] C. L. Tucker, S. G. Advani. Processing of short-fiber systems. In: S. G. Advani, eds. Flow and Rheology in Polymer Composites Manufacturing, pages 147 - 202. Elsevier, Amsterdam et al., 1994.
  • [22] B. R. Whiteside, P. D. Coates, P. J. Hine, R. A. Duckett. Glass fibre orientation within injection moulded automotive pedal, simulation and experimental studies. Plastics, Rubber and Composites. 29(1): 38-45, 2000.
  • [23| M. C. Yeng, C. P. Fung, T. C. Li. The study on the tribological properties of fiber-reinforced pbt composites for various injection molding process parameters. Wear. 252: 934-945, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0016-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.