PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison between the discrete erythrocyte method and constitutive equations for blood

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are a number of methods for analyzing blood flow; however, their applicability and advantages are not sufficiently clear. In this research, the characteristics of a discrete erythrocyte method (DEM). Which is proposed by the present authors, are compared with constitutive equations for blood. The Casson model and a pseudo-Casson model are chosen and compared with the DEM. By discussing the advantages and disadvantages of DEM, its applicability to blood flow simulation is clarified. The results show that the DEM is an appropriate method for simulating the blood flow in small vessels. Moreover, the DEM can express certain rheological properties that are not expressed by the constitutive equations.
Słowa kluczowe
Rocznik
Strony
21--34
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Fukui University, 3-9-1 Bunkyo, Fukui-shi, Fukui-ken 910-8507, Japan
autor
  • Department of Mechanical Engineering, Fukui University, 3-9-1 Bunkyo, Fukui-shi, Fukui-ken 910-8507, Japan
autor
  • Department of Mechanical Engineering, Fukui University, 3-9-1 Bunkyo, Fukui-shi, Fukui-ken 910-8507, Japan
Bibliografia
  • [1] ISHIKAWA T. et. al., Effect of non-Newtonian property of blood on flow through a stenosed tube, Fluid Dynamics Research, 1998, 22, 251–264.
  • [2] ISHIKAWA T., OSHIMA S., YAMANE R., Vortex enhancement in blood flow through stenosed and locally expanded tubes, Fluid Dynamics Research, 2000, 26, 35–52.
  • [3] NAKAMURA M., SAWADA T., Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis, J. Biomech. Eng., 1988, 110, 137–143.
  • [4] LUO X.Y., KUANG Z.B., Non-Newtonian flow patterns associated with an arterial stenosis, J. Biomech. Eng., 1992, 114, 512–514.
  • [5] CASSON N., Rheology oj Disperse System, 1959, Pergamon Press, London.
  • [6] ISHIKAWA T., OSHIMA S., YAMANE R., Numerical simulation of blood flow through stenosed tube with moving wall (in Japanese), Trans. Jap. Soc. Mech. Eng., B, 1997, 63–607, 789–797.
  • [7] FAHREUS R., LINDQVIST T., The viscosity of the blood in narrow capillary tubes, Am. J. Physiol., 1931, 96, 562–568.
  • [8] CHARLES R., POZRIKIDIS C., Significance of the dispersed-phase viscosity on the simple shear flow of suspensions of two-dimensional liquid drops, J. Fluid Mech., 1998, 365, 205–234.
  • [9] ZHOU H., POZRIKIDIS C., Deformation of liquid capsules with incompressible interfaces in simple shear flow, J. Fluid Mech., 1995, 283,175–200.
  • [10] LOEWENBERG M., HINCH E.J., Numerical simulation of a concentrated emulsion in shear flow, J. Fluid Mech., 1996, 321, 395–419.
  • [11] MANGA M., STANE H.A., Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions, J. Fluid Mech., 1995, 300, 231–263.
  • [12] RAMANUJAN S., POZRIKIDIS C., Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformation and the effect of fluid viscosities, J. Fluid Mech., 1998, 361, 117–143.
  • [13] POZRIKIDIS C., Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow, J. Fluid Mech., 1995, 297, 123–152.
  • [14] POZRIKIDIS C., Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, J. Fluid Mech., 2001, 440, 269–291.
  • [15] POZRIKIDIS C., Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow, Physics of Fluids, 2001, 13, 1234–1242.
  • [16] ISHIKAWA T., KAWABATA N., TACHIBANA M., Proposal of a deformable erythrocyte model and numerical analysis of shear flow of blood, JSME Int. J., C, 2001, 44–4, 964–971.
  • [17] ISHIKAWA T., KAWABATA N., TACHIBANA M., Numerical analysis of blood flow under the oscillatory shear field by means of a bead–spring–damper model (in Japanese), Trans. Jap. Soc. Mech. Eng., B, 2001, 67–661, 2180–2187.
  • [18] SAWAZAKI H. et al., Numerical simulation of Pouseuille flow of blood by means of a deformable erythrocyte model (in Japanese), Proc. Mech. Eng. Cong. 2001 Japan, 2001, 01–1, 47–48.
  • [19] ISHIKAWA T. et al., Simulation of blood flow in a small artery with stenosis by means of DEM (in Japanese), Proc. Mech. Eng. Cong. 2002 Japan, 2002, 02–1, 93–94.
  • [20] BESSIS M., MOHANDAS N., A diffractometric method for the measurement of cellular deformability, Blood Cells, 1, 1975, 307–313.
  • [21] KEENTOK M., MILTHORPE J.F., O’DONOVAN E., J. Non-Newtonian Fluid Mechanics, 1985, 17, 23–35.
  • [22] FISCHER T.M., STOHR-LIESEN M., SCHMID-SCHONBEIN H., The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow, Science, 1978, 202, 894–896.
  • [23] FISCHER T.M., On the energy dissipation in a tank-treading human red blood cell, Biophys. J., 32, (1980), 863–868.
  • [24] ISHIKAWA T., KAWABATA N., TACHIBANA M., Proposal of a simulation method for a blood flow by means of a deformable erythrocyte model (in Japanese), Proc. 12th JSME Autumn Bioeng. Conf. Semi., 2001, 01–27, 47–48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0010-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.