PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in power output under the influence of sprint training in handball players

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper was to study the power output using the Wingate test applied in an eight-week training programme realized by handball players, aided by repeated maximal-intensity exercise on a cycle ergometer. The study was conducted on 13 handball players divided into two groups. Group GS (n = 5) done the training in a gym and an additional sprint training on a cycle ergometer, wile group GG (n = 8) performed only the training in a gym. Both training programmes lasted 8 weeks, 5 times a week (Monday to Friday). On Saturday preceding the stan of the experiment and Saturday at the end of each week during the 8-week training programmes, the participants of the experiment came through the Wingate test on a cycle ergometer. The sprint training on the cycle ergometer caused a significant improvement in alactic anaerobic output (the power increase and maintenance phase - IMP) in the Wingate test (8.3% PalMp) and in lactic anaerobic out-put (the power decrease phase - DP) (13.3% PaDP) in group GS. No significant changes in these values were faund in these participants of the Wingate test who belonged to the group GG. The changes in the parameters measured in both groups examined varied significantly.
Rocznik
Strony
31--40
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
  • Institute of Sport Games, Academy of Physical Education, Marymoncka 34, 00-968 Warsaw
autor
  • Department of Biomechanics, Institute of Sport, ul. Trylogii 2/16, 01-982 Warszawa
Bibliografia
  • [1] ABERNETHY P.J., THAYER R., TAYLOR A.W., Acute and chronic responses of skeletal muscle to endurance and sprint exercise, Sports Med., 1990, 10, 365–389.
  • [2] ALLEMEIER C.A., FRY A.C., JOHNSON P., HIKIDA R.S., HAGERMAN F.C., STARON R.S., Effects of sprint cycle training on human skeletal muscle, J. Appl. Physiol., 1994, 77(5), 2385–2390.
  • [3] BAR-OR O., The Wingate anaerobic test. An update on methodology, reliability and validity, Sports Medicine, 1987, 4, 381–394.
  • [4] BOGDANIS G.C., NEVILL M.E., LAKOMY H.K.A., GRAHAM C.M., LOUIS G., Effects of active recovery on power output during repeated maximal sprint cycling, Eur. J. Appl. Physiol., 1996a, 74, 461–469.
  • [5] BOGDANIS G.C., NEVILL M.E., BOOBIS L.H., LAKOMY H.K.A., Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise, J. Appl. Physiol., 1996b, 80, 876–884.
  • [6] CADEFAU J., CASADEMONT J., GRAU J.M., FERNANDEZ J., BALAGUER A., VERNET M., CUSSO R., URBANO-MARQUEZ A., Biochemical and histochemical adaptation to sprint training in young athletes, Acta Physiol. Scand., 1990, 140, 341–351.
  • [7] CALBET J.A.L., CHAVARREN J., DORADO C., Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test, Eur. J. Appl. Physiol., 1997, 76, 308–313.
  • [8] COSTILL D.L., COYLE E.F., FINK W.F., LESMES G.R., WITZMANN F.A., Adaptations in skeletal muscle following strength training. J. Appl. Physiol., 1979, 46, 96–99.
  • [9] DUDLEY G.A., ABRAHAM W.M., TERJUNG R.L., Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle, J. Appl. Physiol., 1982, 53, 844–850.
  • [10] ESBJÖRNSSON M., HELLSTEN-WESTING Y., BALSOM P.D., SJÖDIN B., JANSSON E., Muscle fibre type changes with sprint training, effect of training pattern, Acta Physiol. Scand., 1993, 149, 245–246.
  • [11] ESBJÖRNSSON LILJEDAHL M., HOLM I., SYLVÉN CH., JANSSON E., Different responses of skeletal muscle following sprint training in men and women, Eur. J. Appl. Physiol., 1996, 74, 375–383.
  • [12] HENRIKSSON J., Muscle adaptation to endurance training, impact on fuel selection during exercise, [in:] Maughan R.J., Shirreffs S.M. (Eds.), Biochemistry of exercise, Vol. IX. Human Kinetic, Champaign, Ill., 1996, pp. 329–338.
  • [13] HIRVONEN J., REHUNEN S., RUSKO H., HÄRKÖNEN M., Break-down of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise, Eur. J. Appl. Physiol., 1987, 56(3), 253–259.
  • [14] HOLLOSZY J.O., Adaptation of skeletal muscle to endurance exercise, Med. Sci. Sports., 1975, 7, 155–164.
  • [15] JACOBS I., BAR-OR O., KARLSSON J., DOTAN R., TESCH P.A., KAISER P., INBAR O., Changes in muscle metabolites in female with 30-s exhaustive exercise, Med. Sci. Sports Exercise, 1982, 14(6), 457–460.
  • [16] JACOBS I., ESBJÖRNSSON M., SYLVEN C., HOLM I., JANSSON E., Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate, Med. Sci. Sports Exercise, 1987, 19, 368–374.
  • [17] LINOSSIER M.-T., DENIS C., DORMOIS D., GEYSSANT A., LACOUR J.R., Ergometric and metabolic adaptation to a 5-s sprint training programme, Eur. J. Appl. Physiol., 1993, 67, 408–414.
  • [18] LINOSSIER M.-T., DORMOIS D., GEYSSANT A., DENIS C., Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer, Eur. J. Appl. Physiol., 1997, 75, 491–498.
  • [19] MEDBØ J.I., TABATA I., Relative importance of aerobic and anaerobic energy release during shortlasting exhausting bicycle exercise, J. Appl. Physiol., 1989, 67(5), 1881–1886.
  • [20] PARRA J., CADEFAU J.A., RODAS G., AMIGÓ N., CUSSÓ R., The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle, Acta Physiol. Scand., 2000, 169, 157–165.
  • [21] ROBERTS A.D., BILLETER R., HOWALD H., Anaerobic muscle enzyme changes after interval training, Int. J. Sports Med., 1982, 3, 18–21.
  • [22] RODAS G., VENTURA J.L., CADEFAU J.A., CUSSÓ R., PARRA J., A short training programme for the rapid improvement of both aerobic and anaerobic metabolism, Eur. J. Appl. Physiol., 2000, 82, 480–486.
  • [23] SIMONEAU J.A., LORTIE G., BOULAY M.R., MARCOTTE M., THIBAULT M.C., BOUCHARD C., Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training, Int. J. Sports Med., 1986, 7(3), 167–171.
  • [24] SIMONEAU J.A., LORTIE G., BOULAY M.R., MARCOTTE M., THIBAULT M.C., BOUCHARD C., Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance, Eur. J. Appl. Physiol., 1987, 56(5), 516–521.
  • [25] STATHIS C.G.A., FEBRAIO M.A., CAREY M.F., SNOW R.J., Influence of sprint training on human skeletal muscle purine nucleotide metabolism, J. Appl. Physiol., 1994, 76, 1802–1809.
  • [26] THORSTENSSON A., SJÖDIN B., KARLSSON J., Enzyme activities and muscle strength after “sprint training” in man, Acta Physiol. Scand., 1995, 94(3), 313–318.
  • [27] TRUMP M.E., HEIGENHAUSER G.J.F., PUTMAN C.T., SPRIET L.L., Importance of muscle phosphocreatine during intermittent maximal cycling, J. Appl. Physiol., 1996, 80, 1574–1580.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0010-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.