PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive Elasticity: A Review and Critique of a Bone Tissue Adaptation Model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Living bone is continually undergoing processes of growth, reinforcement and resorption. These processes are termed collectively ``remodeling''. The remodeling processes in living bone are the mechanisms by which the bone adapts its histological structure to changes in long-term loading. The theory of adaptive elasticity was developed as a model for the mechanical load induced adaptation of bone. All three aspects of the theory of adaptive elasticity are reviewed here. These include internal adaptation, surface adaptation and architectural adaptation. The successes of the theory as well as the features of the theory that should now be revised are discussed.
Rocznik
Strony
113--193
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
  • The New York Center for Biomedical Engineering and The Departaments of Biomedical and Mechanical Engineering, The School of Engineering of The City College and Graduate School of the City University of New York New York, NY 10031, U.S.A., scccc@cunyvm.cuny.edu
Bibliografia
  • 1. R.B. ASHMAN, S.C. COWIN, W.C. VAN BUSKIRK, J.C. RICE, A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomechanics, 17, 349–361, 1984.
  • 2. D.R. CARTER, T.E. ORR, D.P. FYHRIE, Relationships between loading history and femoral cancellous bone architecture, J. Biomechanics, 22, 231–244, 1989.
  • 3. S.C. COWIN, D.M. HEGEDUS, Bone remodelling I: A Theory of adaptive elasticity, J. of Elasticity, 6, 313–325, 1976.
  • 4. S.C. COWIN, R.R. NACHLINGER, Bone remodelling III; uniqueness and stability in adaptive elasticity theory, J. of Elasticity, 8, 285–295, 1978.
  • 5. S.C. COWIN, W.C. VAN BUSKIRK, Internal bone remodelling induced by a medullary pin, J. Biomechanics, 11, 269–275, 1978.
  • 6. C. COWIN, W.C. VAN BUSKIRK, Surface bone remodeling induced by a medullary pin, J. Biomechanics, 12, 269–276, 1979.
  • 7. S.C. COWIN, K. FIROOZBAKHSH, Bone remodeling of diaphyseal surfaces under constant load: theoretical predictions, J. Biomechanics, 14, 471–484, 1981.
  • 8. S.C. COWIN, The relationship between the elasticity tensor and the fabric tensor, Mechanics of Materials, 4, 137–147, 1985.
  • 9. S.C. COWIN, R.T. HART, J.R. BALSER, D.H. KOHN, Functional adaptation in long bones: establishing in vivo values for surface remodelling rate coefficients, J. Biomechanics,18, 665–684, 1985.
  • 10. S.C. COWIN, Wolff's law of trabecular architecture at remodelling equilibrium, J. Biomechanical Engineering, 108, 83–88, 1986.
  • 11. S.C. COWIN, A Resolution restriction for Wolff's law of trabecular architecture, Buli. Hosp. Jt. Dis. Orthop. Inst., 49, 206–213, 1989.
  • 12. S.C. COWIN, L. MOSS-SALENTIJN, M.L. Moss, Candidates for the mechanosensory system in bone, J. Biomechanical Engineering, 113, 191–197, 1991.
  • 13. S.C. COWIN, A.M. SADEGH, G.M. Luo, An Evolutionary Wolff’s law for trabecular architecture, J. Biomechanical Engineering, 114 129–136, 1992.
  • 14. S.C. COWIN, Y. ARRAMON, G.M. Luo, A.M. SADEGH, Chaos in the discrete-time algorithm for bone density remodelling rate equations, J. Biomechanics, 26, 1077–1089, 1993.
  • 15. S.C. COWIN, S. WEINBAUM, Yu ZENG, A case for bone canaliculi as the anatomical site of strain generated potentials, J. Biomechanics, 28, 1281–1296, 1995.
  • 16. S.C. COWIN, Strain or deformation rate-dependent finite growth in soft tissues, J. Biomechanics, 29, 647–649, 1996.
  • 17. S.C. COWIN, Bone Poroelasticity, J. Biomechanics, 32, 218–238, 1999.
  • 18. S.C. COWIN, M.L. Moss, Mechanosensory mechanisms in bone, [in:] Textbook of Tissue Engineering, (2nd edition) R. LANZA, R. LANGER, W. CHICK [Eds.], Academic Press, San Diego, 723–738, 2000.
  • 19. S.C. COWIN, The false premise in Wolff’s law, [in:] Bone Mechanics Handbook, S.C. COWIN [Ed.], CRC Press, Boca Raton, FL, 2001.
  • 20. S.C. COWIN, Mechanosensation and fluid transport in living bone, Journal of Musculoskeletal and Neuronal Interactions (JMNI), 2, 256–260, 2002.
  • 21. K. FIROOZBAKHSH, S.C. COWIN, Devolution of inhomogeneities in bone structure: predictions of adaptive elasticity theory, J. Biomechanical Engineering, 102, 287–293, 1980.
  • 22. K. FIROOZBAKHSH, S.C. COWIN, An analytical model of Pauwels functional adaptation mechanism for bone, J. Biomechanical Engineering, 103, 246–252, 1981.
  • 23. H.M. FROST, Dynamics of bone remodelling, [in:] Bone Biodynamics, H.M. FROST [Ed.], Little and Brown, Boston 1964.
  • 24. Y.C. FUNG, Biomechanics; motion, flow, stress and growth, Springer, New York 1990.
  • 25. D.P. FYHRIE, D.R. CARTER, A unifying principle relating stress to trabecular bone morphology, J. Orthop. Res., 4, 304–317, 1986.
  • 26. A.E. GOODSHIP, L.E. LANYON, J.H. MCFIE, Functional adaptation of bone to increased stress, J. Bone Jt Surg., 61-A, 539–546, 1979.
  • 27. R.W. GOULET, S.A. GOLDSTEIN, M.J. CIARELLI, J.L. KUHN, M.B. BROWN, L.A. FELDKAMP, The relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomechanics, 27, 375–389, 1994.
  • 28. T. HARRIGAN, R.W. MANN, Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor, J. Mat. Sci., 19, 761–769, 1984.
  • 29. T.P. HARRIGAN, M. JASTY, R.W. MANN, W.H. HARRIS, Limitations on the continuum assumption in cancellous bone, J. Biomechanics, 21, 269–276, 1988.
  • 30. R.L. HART, Bone modelling and remodelling: theories and computation, [in:] Bone Mechanics Handbook, S.C. COWIN [Ed.], CRC Press, Boca Raton, FL, 2001.
  • 31. R.F.S. HEARMON, An introduction to applied anisotropic elasticity, Oxford University Press, Oxford. 1961
  • 32. D.M. HEGEDUS, S.C. COWIN, Bone remodelling, II: small strain adaptive elasticity, J. of Elasticity, 6, 337–352, 1976.
  • 33. G. HERMANN, H. LIEBOWITZ, Mechanics of bone fracture, [in:] Fracture: An Advanced Treatise, Vol. 7, H. LIEBOWITZ [Ed.], Academic Press, 771–840, New York 1972.
  • 34. J.E. HILLIARD, Determination of structural anisotropy, Stereology – Proc. 2nd Int. Congress for Stereology, Chicago 1967, Springer, 219, Berlin 1967.
  • 35. R. HUISKES, H. WEINANS, J. GROOTENBOER, M. DALSTRA, B. FUDALA, T.J. SLOOFF, Adaptive bone remodelling theory applied to prosthetic-design analysis, J. Biomechanics, 20, 1135–1150, 1987.
  • 36. C.R JACOBS, J.C. SIMO, G.S. BEAUPRE, D.R. CARTER, Adaptive bone remodelling incorporating simultaneous density and anisotropy considerations, J. Biomechanics, 30, 603–613, 1997.
  • 37. Z.G.K JAWORSKI, M. LISKOYA-KIAR, H.K. UHTHOFF, Effect of long term immobilization on the pattern of bone loss in older dogs, 3. Bone Jt Surg., 62-B, 104–110, 1980.
  • 38. M. KACHANOY, Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties, Int. J. Fracture, 97, 1–32, 1999.
  • 39. K. KANATANI, Characterization of structural anisotropy by fabric tensors and their statistical test, J. Japanese Soil Mech. Found. Engrg., 23, 171, 1983.
  • 40. K.I. KANATANI, Distribution of directional data and fabric tensors, Int. J. Engr. Sci., 22, 149–164, 1984a.
  • 41. K. KANATANI, Stereological determination of structural anisotropy, Int. J. Engr. Sci., 22, 531–546, 1984b.
  • 42. K. KANATANI, Procedures for stereological estimation of structural anisotropy, Int. J. Engrg. Sci., 23, 587–596, 1985.
  • 43. A.D. KUO, D.R. CARTER, Computational methods for analysing the structure of cancellous bone in planar sections, J. Orthop. Res., 9, 918–931, 1991.
  • 44. B.K.F. KUMMER, Biomechanics of bone, [in:] Biomechanics, Y.C. FUNG, N. PERRONE, M. ANLIKER [Eds.], Prentice Hall, 237–271, 1972.
  • 45. L.E. LANYON, A.E. GOODSHIP, C.J. PYE, J.H. MACFIE, Mechanically adaptive bone remodelling, J. Biomechanics, 15, 141–154, 1982.
  • 46. L.E. LANYON, C.T. RUBIN, Static versus dynamic loads as an influence on bone remodelling, J. Biomechanics, 17, 897–906, 1984.
  • 47. S.G. LEKHNJTSKII, Theory of elasticity of an anisotropic elastic body, Holden Day, San Francisco 1963.
  • 48. G.M. LUO, S.C. COWIN, A.M. SADEGH, Y. ARRAMON, Implementation of strain rate as a bone remodelling stimulus, J. Biomechanical Engineering, 117, 329–338, 1995.
  • 49. R.B. MARTIN, D.R. BURR, Structure, Function and Adaptation of Compact Bone, Raven Press, New York 1989.
  • 50. M.M. MEHRABADI, S. NEMAT-NASSER, H.M. SHODJA, G. SUBHASH, Some basic theoretical and experimental results on micromechanics of granular flow, [in:] Micromechanics of Granular Materials, S. SATAKE, J.T. JENKINS [Eds.], Elsevier, Amsterdam 1988.
  • 51. J. MONNIER, L. TRABUCHO, Existence and uniqueness of solution to an adaptive elasticity model, Mathematics and Mechanics of Solids, 3, 217–228, 1998a.
  • 52. J. MONNIER, L. TRABUCHO, An Existence and uniqueness result in bone remodelling theory, Comp. Meth. Appl. Mech. Engng., 151, 539–544, 1998b.
  • 53. P.D.F. MURRAY, Bones, a study of the development and structure of the vertebrate skeleton, Cambridge U.P., 1936.
  • 54. J.A. O'CONNOR, L.E. LANYON, H. MACFIE, The influence of strain rate on adaptive bone remodeling, J. Biomechanics, 15, 767–781, 1982.
  • 55. A. ODGAARD, J. KABEL, B. VAN RIETBERGEN, M. DALSTRA, R. HUISKES, Fabric and elastic principal directions of cancellous bone are closely related, J. Biomechanics, 30, 487–495, 1997.
  • 56. ODGAARD, Three-dimensional methods for quantification of cancellous bone architecture, Bone, 20, 315–328, 1997.
  • 57. ODGAARD, Quantification of cancellous bone architecture, Bone Mechanics Handbook, S.C. COWIN [Ed.], CRC Press, Boca Raton, FL, 2001.
  • 58. C.E. OXNARD, H.C. YANG, Beyond biometrics: studies of complex biological patterns, Symposia of the Zoological Society of London, 46, 127–167, 1981.
  • 59. F. PAUWELS, Gesammelte abhandlungen zur funktionellen anatornie des Bewegungsapparates, Springer Verlag, 1965.
  • 60. P.J. PRENDERGAST, D. TAYLOR, Prediction of bone adaptation using damage accumulation, J. Biomechanics, 27, 1067–1076, 1994.
  • 61. P.J. PRENDERGAST, An analysis of theories in biomechanics, Engng. Trans., 49,117–133, 2001.
  • 62. W. Roux, The problems, methods, and scope of developmental mechanics, An introduction to the "Archiv für Entwckelungsmechanik der Organismen", (translated by W.M. WHEELER), Wood's Hole Biol. Lect., (1895), pp. 149–90, 1885.
  • 63. C.T. RUBIN, L.E. LANYON, Regulation of bone formation by applied dynamic loads, J. Bone Jt. Surg., 66A, 397, 1984.
  • 64. SHAFIRO, M. KACHANOY, Materials with fluid filled pores of various shapes: effective elastic properties and fluid pressure polarization, Int. J. Solids Structures, 34, 3517–3540, 1997.
  • 65. T.H. SMIT, J.M. HUYGHE, S.C. COWIN, A double poroelastic model of cortical bone: estimation of the linear isotropic parameters, J. Biomechanics, 35, 829–836, 2002.
  • 66. S. TIMOSHENKO, Strength of Materials, 3rd. ed., Vol. l, Chapter VIII, Van Nostrand, 1955.
  • 67. L. TRABUCHO, An existence result in bone remodelling [in:] IUTAM Symposium on Synthesis in Bio-Solid Mechanics, P. PETERSEN and M.P. BENDSOE [Eds.], Kluwer, Dordrecht, 235–246, 1999.
  • 68. M.C. TSILI, Theoretical solutions for internal bone remodelling of diaphyseal shafts using adaptive elasticity theory, J. Biomechanics, 33, 235–239, 2000.
  • 69. C.H. TURNER, S.C. COWIN, On the dependence of the elastic constants of an anisotropic porous material upon porosity and fabric, J. Materials Sci., 22, 3178–3184, 1987.
  • 70. C.H. TURNER, S.C. COWIN, J.Y. RHO, R.B. ASHMAN, J.C. RICE, The fabric dependence of the orthotropic elastic properties of cancellous bone, J. Biomechanics, 23, 549–561, 1990.
  • 71. H.K. UHTHOFF, Z.F.G. JAWORSKI, Bone loss in response to long term immobilization, J. Bone Jt Surg., 60-B, 420–429, 1978.
  • 72. VAN COCHRAN, Primer of Orthopaedic Biomechanics, Churchill Livingstone, New York 1982.
  • 73. VAN RIETBERGEN, A. ODGAARD, J. KABEL, R. HUISKES, Direct mechanical assessment of elastic symmetries and properties of trabecular bone architecture, J. Biomechanics, 29, 1653–1657, 1996.
  • 74. VAN RIETBERGEN, A. ODGAARD, J. KABEL, R. HUISKES, Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions, J. Orthop. Res., 16, 23–28, 1998.
  • 75. L. WANG, S.P. FRITTON, S.C. COWIN, S. WEINBAUM, Fluid pressure relaxation mechanisms in osteonal bone specimens: modeling of an oscillatory bending experiment, J. Biomechanics, 32, 663–672, 1999.
  • 76. L. WANG, S.C. COWIN, S. WEINBAUM, S.P. FRITTON, Modelling tracer transport in an osteon under cyclic loading, Ann. Biomed. Engng., 28, 1200–1209, 2000.
  • 77. S. WEINBAUM, S.C. COWIN, Yu ZENG, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomechanics, 27, 339–360, 1994.
  • 78. W.J. WHITEHOUSE, The quantitative morphology of anisotropic trabecular bone, J. Microscopy, 101, 153–168, 1974.
  • 79. W.J. WHITEHOUSE, E.D. DYSON, Scanning electron microscope studies of trabecular bone in the proximal end of the human femur, J. Anatomy, 118, 417–444, 1974.
  • 80. J. WOLFF, Dos gesetz der transformation der Knochen, Berlin, Hirschwald, 1892.
  • 81. J. WOLFF, The law of bone remodelling, Springer, Berlin 1986.
  • 82. S.L.Y. Woo, S.C. KUEI, W.A. DILLON, D. AMIET, F.C. WHITE, W.H. AKESON, The effect of prolonged physical training on the properties of long bone – a study of Wolff’s law, J. Bone Jt Surg., 63 A, 780–787, 1981.
  • 83. L. You, S.C. COWIN, M. SCHAFFLER, S. WEINBAUM, A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix, J. Biomechanics, 34, 1375–1386, 2001.
  • 84. ZHANG, S.C. COWIN, S. WEINBAUM, Electrical signal transmission in a bone cell network: the influence of a discrete gap junction, Ann. Biomed. Engng., 26, 644–659, 1998.
  • 85. P.K. ZYSSET, R.W. GOULET, S.J. HOLLISTER, A global relationship between trabecular morphology and homogenized elastic properties, Journal of Biomechanical Engineering, 120, 640–646, 1998.
  • 86. P.K. ZYSSET, A review of morphology-elasticity relationships in human trabecular bone: theories and experiments, J. Biomechanics, 2002 (in press).
  • M. EPSTEIN, G. A. MAUGIN, Thermomechanics of volumetric growth in uniform bodies, International Journal of Plasticity, 16, 951–978, 2000.
  • V.A. LUBARDA, A. HOGER, On the mechanics of solids with a growing mass, International Journal of Solids and Structures, 39, 4627–4664, 2002.
  • S. RAMTANI, M. ZIDI, Damaged bone remodelling theory: thermodynamically approach, Mechanics Research Communications, 26, 701–708, 1999.
  • S. RAMTANI, M. ZIDI, A theoretical model of the effect of continuum damage on a bone adaptation model, Journal of Biomechanics, 34, 471–479, 2001.
  • S. RAMTANI, M. ZIDI, Damaged bone adaptation under steady homogeneous stress, ASME Journal of Biomechanical Engineering, 124, 1–6, 2002.
  • M. ZIDI, S. RAMTANI, Stability analysis and finite element simulation of bone remodelling model, ASME Journal of Biomechanical Engineering, 122, 1–4, 2000.
Uwagi
Część bibliografii bez numeracji
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0008-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.