PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity analysis and material identification for activated smooth muscle

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
8th International Conference on Numerical Methods in Continuum Mechanics (September 19-24, 2000 ; Liptovsky Ján, Low Tatras ; Slovakia)
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of material identification for smooth muscle tissue in activated, or passive states. In [1] a composite type mathematical model has been proposed describing the complexity of the tissue reduced to the networks of muscle and collagen fibres. The computational model is based on the total Lagrangian formulation with incompressibility of the bulk material. The problem of inflating vessels is considered in order to allow simulation of real experimental conditions and, thus, to determine constitutive parameters of muscle in active state. These parameters are identified also from hysteresis, or relaxation curves. The direct differentiation, or the adjoint systems techniques are applied to the sensitivity analysis. Results of numerical tests are given.
Rocznik
Strony
519--541
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • University of West Bohemia, Faculty of Applied Sciences, Department of Mechanics, 306 14 Plzen, Czech Republic
autor
  • University of West Bohemia, Faculty of Applied Sciences, Department of Mechanics, 306 14 Plzen, Czech Republic
Bibliografia
  • [1] H. Abé, K. Hayashi, M. Sato. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Springer-Verlag, Tokyo, 1996.
  • [2] J.M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlin. Anal. Mech., 1: 187-241. Heriot-Watt Symp., Edinburgh 1976, 1977.
  • [3] R. Cimrman, E. Rohan. FE simulation of muscle behaviour in dynamic problems, Proceedings of the conference ECCM 2001, full paper on CD-ROM, Kraków, 2001.
  • [4] M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures, Vol. 2, J. Wiley & Sons, Chichester, 1997.
  • [5] Y.C. Fung. Biomechanics. Mechanical Properties of Living Tissues. (Second edition), Springer-Verlag, New York, 1993.
  • [6] A.C. Guyton, J.E. Hall. Textbook of Medical Physiology. W.B. Saunders Company, Philadelphia, 1995.
  • [7] D.S. Hickey, J.I. Phillips, D.W.L. Hukins. Arrangement of collagen fibrils and muscle fibres in the female urethra and their implications for the control of micturition. British Journal of Urology, 54: 556-561, 1982.
  • [8] J.D. Humprey, R.K. Stumpf, F.C.P. Yin. Determination of a constitutive relation for passive myocardium. ASME, J. Biomechanical Eng., 112: 333-346, 1990.
  • [9] Keener, J. & Sneyd, J.: Mathematical Physiology. Interdisciplinary Applied Mathematics, Vol. 8. Springer, New York, 1998.
  • [10] M. Kleiber, T.D. Hien, H. AntAnez, P. Kowalczyk. Parameter Sensitivity in Nonlinear Mechanics. J. Wiley & Sons, Chichester, 1997.
  • [11] J.A.C. Martins, E.B. Pires, R. Salvado, P.B. Dinis. A numerical model of passive and active behavior of skeletal muscles. Computational Methods in Applied Mechanical Engineering, 151: 419-433, 1998.
  • [12] MATLAB - Optimization Toolbox, User's guide. The MathWorks Inc., 1996.
  • [13] J. Netas. Theory of locally monotone operators modelled on the finite displacement theory for hyperelasticity. Beitrdge zur Analysis, 8: 103-114, 1976.
  • [14] I. Nigul, U. Nigul. On algorithms of evaluation of Fung's relaxation function parameters. Journal of Biomechanics, 20: 334-352, 1987.
  • [15] J.L. Palladino, A. Noordergraaf, Muscle contraction Mechanics from ultrastructural dynamics. In: G.M. Drzewiecki, J.K-J. Li, eds., Analysis and Assessment of Cardiovascular Function, 33-57. Springer, New York, 1998.
  • [16] J.M. Price, P.J. Pattitucci, Y.C. Fung. Mechanical properties of resting taenia coli smooth muscle. Journal of the American Physiological Society, 211-220, 1979.
  • [171 E. Rohan, R. Cimrman. Numerical simulation of activated smooth muscle behaviour using finite elements, In: Proceedings of UWB, 143-155. University of West Bohemia, Plzeil, 2000.
  • [18] E. Rohan, R. Cimrman. Optimization methods in material identification for composite model of resting smooth muscle. In: Proceedings of the conference Engineering Mechanics 2000, III/59-64, Svratka 2000.
  • [19] E. Rohan, J.R. Whiteman. Shape optimization of elasto-plastic structures and continua, Comp. Meth. Appl. Mech. Eng, 187: 261-288, Elsevier, 2000.
  • [20] J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Springer-Verlag, Berlin, 1998.
  • [21] D.H. Van Campen, J.M. Huyghe, P.H.M. Bovendeerd, T. Arts. Biomechanics of the heart muscle. Eur. J. Mechanics, A/Solids, 13: 19-41, 1994.
  • [22] P. Vena, R. Contro. A viscoelastic model for anisotropic biological tissues in finite strains. In: Proceedings of the ECCM '99 Conference, (on CD-ROM) Miinchen, 1999.
  • [23] G.I. Zahalak, S.P. Ma. Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics. Trans. ASME,J. Biomech. Engineering, 112: 52-62, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.