PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite displacements in reciprocity-based FE formulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
8th International Conference on Numerical Methods in Continuum Mechanics (September 19-24, 2000 ; Liptovsky Ján, Low Tatras ; Slovakia)
Języki publikacji
EN
Abstrakty
EN
In this paper, Trefftz polynomials are used for the development of FEM based on the reciprocity relations. Such reciprocity principles are known from the Boundary Element formulations, however, using the Trefftz polynomials in the reciprocity relations instead of the fundamental solutions yields the non-singular integral equations for the evaluation of corresponding sub-domain (element) relations. A weak form satisfaction of the equilibrium is used for the inter-domain connectivity relations. For linear problems, the element stiffness matrices are defined in the boundary integral equation form. In non-linear problems the total Lagrangian formulation leads to the evaluation of the boundary integrals over the original (related) domain evaluated only once during the solution and to the volume integrals containing the non-linear terms. Also, Trefftz polynomials can be used in the post-processing phase of the FEM computations for small strain problems. By using the Trefftz polynomials as local interpolators, smooth fields of the secondary variables (strains, stresses, etc.) can be found in the whole domain (if it is homogeneous). This approach considerably increases the accuracy of the evaluated fields while maintaining the same rate of convergence as that of the primary fields. Stress smoothing for large displacements will be the aim of further research. Considering the examples of simple tension, pure bending and tension of fully clamped rectangular plate (2D stress/strain problems) for large strain-large rotation problems, the use of the initial stiffness, the Newton-Raphson procedure, and the incremental Newton-Raphson procedure will be discussed.
Rocznik
Strony
469--480
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Žilina, Vel'ky Diel, 010 26 Žilina, Slovakia
autor
  • Faculty of Mechanical Engineering, University of Žilina, Vel'ky Diel, 010 26 Žilina, Slovakia
autor
  • Faculty of Mechanical Engineering, University of Žilina, Vel'ky Diel, 010 26 Žilina, Slovakia
Bibliografia
  • [1] J. Bala, J. Sladek, V. Sladek. Stress Analysis by Boundary Element Method, Elsevier, 1989.
  • [2] K.-J. Bathe. The Finite Element Procedures. Prentice Hall, Englewood Cliffs, 1996.
  • [3] R. Bausinger, G. Kuhn. The Boundary Element Method (in German). Expert Verlag, Germany, 1987.
  • [4] T. Blacker, T. Belytschko. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancement. Int. J. Num. Meth. Eng., 37: 517-536, 1994.
  • [5] Y.K. Cheung, W.G. Jin, 0.C. Zienkiewicz. Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions. Comrnun. In Appl. Numer. Methods, 5: 159-169, 1989.
  • [6] Y.K. Cheung, W.G. Jin, 0.C. Zienkiewicz. Solution of Helmholtz equation by Trefftz method. Int. J. Nurser. Meth. Engng., 32: 63-78, 1991.
  • [7] T.A. Cruse. An improved boundary integral equation method for three dimensional elastic stress analysis, Computers Ed Structures, 5: 741-754, 1974.
  • [8] T.A. Cruse. Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Acad. Publ., Boston, 1988.
  • [9] A. Forster, G. Kuhn. A field boundary element formulation for material nonlinear problems at finite strains, lnt. J. Solids Structures, 31, 1777-1792, 1994.
  • [10] J. Jirousek, A. Wróblewski. T-elements: State of the art and future trends. Archives of Comput. Mech., 3 323-434, 1997.
  • [11] J.A. Kołodziej, A. Uścilowska. Trefftz-type procedure for Laplace equation on domains with circular holes circular inclusions, corners, slits and symmetry. CA MES, 4: 501-519, 1997.
  • [12] V. Kompig. Finite elements satisfying all governing equations inside the element. Computers 1 Struct., 4 273-278, 1994.
  • [13] V. Kompig, L. Fragtia. Polynomial representation of hybrid finite elements. CA MES, 4: 521-532, 1997.
  • [14] V. Kompig, L. Jakubovitova, F. Konkor. Non-singular reciprocity based BEM/FEM formulations. IU TAM/IACEM/IABEM Symposium on Advanced Math. and Comput. Mech. Aspects of the Bound. Elem. Meth. Cracow, 1999.
  • [15] V. Kompig, L. Jakubovitova. Errors in modelling high order gradient fields using isoparametric and reciprocity based FEM. Int. J. Eng. Modelling, 13: 27-34, 2000.
  • [16] V. Kompig, J. Oravec, J. Wiry. Reciprocity based FEM. Strojnfcky Casopis, 50: 188-201, 1999.
  • [17] V. Kompig, M. Źmindak, L. JakubovićovA. Error estimation in multi-domain BEM (Reciprocity based FEM) In: W. Wunderlich, ed., ECCM '99, European Conference on Computational Mechanics, CD-ROM, Miinchen 1999.
  • [18] G. Kuhn, P. Partheimfiller, O. Kohler. Regularization and evaluation of singular domain integrals in boundary element methods. In: V. Sladek, J. Sladek, eds., Singular Integrals in Boundary Element Methods, 223-262 Comput. Mech. Publ., Southampton, 1998.
  • [19] J.C. Lachat, J.O. Watson. Effective numerical treatment of boundary integral equation: a formulation for three dimensional elasto-statics. Int. J. Num. Meth. Eng., 10: 991-1005, 1976.
  • [20] E.A.W. Maunder, V. Kompig. Stress recovery techniques based on Trefftz functions. 8th International Conference on Numerical Methods in Continuum Mechanics, Liptovsk,i Jdn, Low Tatras, Slovakia, September 19-24, 2000, CD ROM.
  • [21] E.A.W. Maunder, A.C.A. Ramsay. Quadratic equilibrium elements. In: J. Robinson, ed., FEM Today and Future, 401-407. Robinson and Associates, 1993.
  • [22] I. Prieto, A.L. Iban, J.A. Garrido. 2D analysis for geometrically non-linear elastic problem using BEM. Eng. Anal. with Bound. Elements, 23, 247-256, 1999.
  • [23] Q. Niu, M.S. Shephard. Superconvergent extraction techniques for finite element analysis. Int. J. Num. Meth, Eng., 36: 811-836, 1993.
  • [24] B. Szybiński, A.P. Zieliński. Alternative T-complete systems of shape functions applied in analytical Trefftz finite elements. Num. Meth. for Part. Dill. Eqs., 11: 375-388, 1995.
  • [25] J.A. Teixeira de Freitas, C. Cisma.siu, Z.M. Wang. Comparative analysis of hybrid-Trefftz stress and displacement elements. Archives of Computational Methods in Engineering, 6: 35-59, 1999.
  • [26] E. Trefftz. Ein Gegenstiick zum Ritzschen Verfahren. Proc. 2nd lut. Congress of Applied Mechanics, Zfirich, 1926.
  • [27] 0.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, Vols. I-II, 4-th Edition. Wiley, 1989, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.