PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of shell-beam transitions in the presence of finite rotations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
NATO Advanced Research Workshop on the Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion [July 2-7, 2000 ; Pułtusk ; Polska]
Języki publikacji
EN
Abstrakty
EN
A finite element formulation for a transition element between shells and beam structures is described in this paper. The elements should allow changes between models in an `optimal' way without or with little disturbances which decrease rapidly due to the principle of Saint-Venant. Thus, the constraints are formulated in such a way that a transverse contraction within the coupling range is possible. The implementation of the coupling conditions is done with the Penalty Method or the Augmented Lagrange Method. The element formulation is derived for finite rotations. Same rotational formulations are used in beam and shell elements. Rotational increments up to an angle of 2pi are possible without singularities based on a multiplicative update procedure. It can be shown that the transition to rigid bodies can be derived with some modifications. Examples prove the reliability of the transition formulation. Here simple element tests and practical applications are shown.
Rocznik
Strony
405--418
Opis fizyczny
Bibliogr. 10 poz., rys. tab., wykr.
Twórcy
autor
  • Institute for Structural Analysis, Universität Karlsruhe (TH), Kaiserstr. 12, D-76131 Karlsruhe
autor
  • Institute for Structural Analysis, Technische Universität Darmstadt Alexanderstr. 7, D-64283 Darmstadt
Bibliografia
  • [1] A Felippa. Error analysis of penalty function techniques for constraint definition in linear algebraic systems. Int. J. Num. Methods Engng., 11: 709-728, 1977.
  • [2] F. Gruttmann, R. Sauer, W. Wagner. A geometrical nonlinear eccentric 3D beam element with arbitrary cross-sections. Comp. Methods Appl. Mech. Engrg., 160: 383-400, 1998.
  • [3] F. Gruttmann, S. Klinkel, W. Wagner, A finite rotation shell theory with application to composite structures. Europ. Journal of Finite Elements, 4: 597-632, 1995.
  • [4] M.R. Hestenes. Multiplier and gradient methods. J. of Optimization Theory and Applications, 4: 303-320, 1969.
  • [5] S. Klinkel, F. Gruttmann, W. Wagner. A continuum based 3D-shell element for laminated structures. Computers and Structures, 71: 43-62 1999.
  • [6] D.G. Luenberger. Linear and Nonlinear Programming, 2nd edition. Addison-Wesley, Reading, 1989.
  • [7] M.J.D. Powell, A method for nonlinear constraints and minimization problems. In: R. Fletcher, ed., Optimization, 283-298, 1969.
  • [8] J.C. Simo, T.A. Laursen. An augmented lagrangian treatment of contact problems involving friction. Computers and Structures, 42: 97-116, 1992.
  • [9] W. Wagner, F. Gruttmann, R. Sauer. Large displacement 3D-beam formulations for the eccentric coupling with shells. In: Proceedings of the 4th mt. Conf. on Computational Mechanics, 29.6-2.7.1998, Buenos Aires, Argentina (CD-ROM), Part II, Section 7, Paper 16, 1-14, 1998.
  • [10] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, Vol. 2, 4th edition. McGraw-Hill, London, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.