PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nordsieck form of multirate integration method for flexible multibody dynamic analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
NATO Advanced Research Workshop on the Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion [July 2-7, 2000 ; Pułtusk ; Polska]
Języki publikacji
EN
Abstrakty
EN
A Nordsieck form of multirate integration scheme has been proposed for flexible multibody dynamic systems of which motions are represented by large gross motion coupled with small vibration. Based on the conventional flexible multibody dynamics formulation, vibrational modal coordinates with floating reference frame and relative joint coordinates are employed to describe the motion in this research. In the multirate integration, the fast variables of the flexible multibody system are integrated with smaller stepsize, whereas the slow variables are integrated with larger stepsize. It is assumed that vibrational modal coordinates are treated as fast variables, whereas the relative joint coordinates are treated as slow variables to apply multirate integration method. A method that decomposes the equations of motion for flexible multibody systems into a fast system with flexible coordinates and a slow system with joint relative coordinates has been also proposed. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multirate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of a military tank have been carried out to show the effectiveness and efficiency of the proposed method.
Rocznik
Strony
391--403
Opis fizyczny
Bibliogr. 12 poz., rys. tab., wykr.
Twórcy
autor
  • Chungnam National University, Department of Mechatronics Engineering, 220 Kung-dong, Yusong-ku, Taejon, 305-764, Korea
Bibliografia
  • [1] W. Daniel. A study of the stability of subcycling algorithms in structural dynamics. Comput. Methods Appl. Mech. Engrg. 156: 1-13, 1998.
  • [2] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.
  • [3] C.W. Gear. Automatic multirate methods for ordinary differential equations. In: S.H. Lavington, ed., Report UIUCDCS-R-80-1000 Information Processing 80, North-Holland Publishing Company, 1980.
  • [4] E. Hofer. A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM Journal of Numerical Analysis, 13(5): 645-663, 1976.
  • [5] S.S. Kim, J.S. Freeman. Multirate integration for multibody dynamic analysis with decomposed subsystems. Proceedings of ASME, Design Engineering Technical Conferences, DETC99/VIB-8252, 1999.
  • [6] S.S. Kim, J.Y. You. Gun system vibration analysis using flexible multibody dynamics. J. of KSNVE, 8(1): 11, 1997.
  • [7] S.S. Kim, J.Y. You, K.H. Kim. Finite element approach to flexible multibody dynamic system with moving effects. Transactions of the KSME (A), 22(11): 2048-2060, 1998.
  • [8] H.J. Lai, E.J. Haug. A Decoupled Recursive Approach for Flexible Multibody Dynamics and Its Application in Parallel Computation, Technical Report R-55. Center for Computer Aided Design, University of Iowa, Iowa 1989.
  • [9] L.F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman and Hall, 1994.
  • [10] D. Solis Multirate Integration Methods for Constrained Mechanical Systems with Interacting Subsystems, Ph.D. Thesis. The University of Iowa, Iowa City, Iowa, 1996.
  • [11] M. Srinivasin. Multirate Numerical Integration in Design and Analysis of Flexible Mechanical Systems, Ph.D. Thesis. The University of Iowa, Iowa City, Iowa, 1982.
  • [12] S.C. Wu, E.J. Haug, S.S. Kim. A variational approach to dynamics of flexible multibody systems. Mechanics of Structures and Machines, 17(1): 3-32, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.