PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced modelling of flexible multibody systems using virtual bodies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
NATO Advanced Research Workshop on the Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion [July 2-7, 2000 ; Pułtusk ; Polska]
Języki publikacji
EN
Abstrakty
EN
When new formulations for the description of flexible multibody systems are proposed, often they imply the use of new sets of generalized coordinates, even if the finite element method is used to describe the system flexibility. The adoption of such formulations implies that an additional effort must be made to describe the kinematic constraints that involve flexible bodies. The commercial multibody codes generally have good kinematic joint libraries for rigid bodies, but they are limited in the type of joints available in what flexible bodies are concerned. This work proposes and demonstrates that such limitations can be overcome by using virtual rigid bodies. The idea is to develop a single kinematic joint that restricts all relative degrees of freedom between one or more nodes of the flexible body and a rigid body. The designation of virtual body derives from assuming that it is a massless rigid body. In this form any of the kinematic joints between rigid bodies available in the multibody code libraries, can be used. In the process it is shown that the interaction of the user with the multibody code is much simpler. The numerical problems resulting from ill-conditioned mass matrix, due to the null inertias of the virtual bodies, are avoided by using a sparse matrix solver for the solution of the equations of motion. The proposed formulation is applied to a complex flexible multibody system, represented by the model of a road vehicle with flexible chassis, the results are presented and the discussion on the relative virtues and drawbacks of the current methodologies is made with emphasis on the models and algorithms used.
Rocznik
Strony
374--390
Opis fizyczny
Bibliogr. 17 poz., rys. tab., wykr.
Twórcy
autor
  • Instituto de Engenharia Mecanica (IDMEC), Instituto Superior Tecnico Av. Rovisco Pais, 1041-001 Lisboa, Portugal
autor
  • Instituto de Engenharia Mecanica (IDMEC), Instituto Superior Tecnico Av. Rovisco Pais, 1041-001 Lisboa, Portugal
Bibliografia
  • [1] J. Ambrósio, J. Gonqalves. Complex flexible multibody systems with application to vehicle dynamics. In: J. Ambrósio, W. Schiehlen, eds., Euromech Colloquium 404 - Advances in Computational Multibody Dynamics, 241-258. IDMEC/IST, 1999.
  • [2] J. Ambrósio, J. Gonqa,lves. Complex flexible multibody systems with application to vehicle dynamics. Multibody Systems Dynamics, 6(2): 163-182, 2001.
  • [3] J. Ambrósio, P. Ravn. Elastodynamics of multibody systems using generalized inertial coordinates and structural damping. Mech. Struct. and Mach., 25(2): 201-219, 1997.
  • [4] ANSYS - Version 5.2. Swanson Analysis Inc., 1995.
  • [5] D. Bae, J. Han, J. Choi. An implementation method for constrained flexible multibody dynamics using virtual body and joint. Multibody Systems Dynamics, 4: 207-226, 2000.
  • [6] K. Crowe, J. Yuan-An, D. Neaderhouser, P. Smith. A Direct Sparse Linear Equation Solver using Linked List Storage. IMSL Technical Report 9006, IMSL, Houston, 1990.
  • [7] I. Duff, A. Erisman, J. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 1986.
  • [8] G. Gear. Numerical simulation of differential-algebraic equations. IEE Translations on Circuit Theory, CT-18: 89-95, 1981.
  • [9] C. Gear, L. Petzold. Ode methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal., 21: 367-384, 1984.
  • [10] G. Gim, P. Nikravesh. An analytical model of pneumatic tire for vehicle dynamic simulations, Part I. Int. J. of Vehicle Design, 11(6): 589-618, 1991.
  • [11] J. Gonqalves, J. Ambrósio. Sistemas Mectinicos Rigido-Flexiveis Utilixando Coordenadas Naturais Para a Andlise Dindrnica de Vefculos (Rigid-Flexible Mechanical Systems With Natural Coordinates For Vehicle Dynamics). Technical Report IDMEC 96/006, Institute of Mechanical Engineering, I.S.T., Portugal, 1996.
  • [12] J. Meijaard. Validation of flexible beam elements in dynamics programs. Nonlinear Dynamics, 9: 21-36, 1996.
  • [13] P. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice Hall, New Jersey, 1988.
  • [14] M. Pereira, P. Proenqa. Dynamic analysis of spatial flexible multibody systems using joint coordinates. Int. J. Num. Meth. Engng., 32: 1799-1812, 1991.
  • [15] A. Shabana. Dynamic Analysis of Large Scale Inertia Variant Flexible Mechanisms. Ph.D. Thesis, University of Iowa, 1982.
  • [16] A. Shabana, R. Wehage. A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. Journal of Structural Mechanics, 11(3): 401-431, 1983.
  • [17] W. Yoo, E. Haug. Dynamics of flexible mechanical systems using vibration and static correction modes. Journal of Mechanisms, Transmissions and Automation in Design, 108: 315-322, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.