PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Non-linear dynamics of flexible shell structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
NATO Advanced Research Workshop on the Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion [July 2-7, 2000 ; Pułtusk ; Polska]
Języki publikacji
EN
Abstrakty
EN
The initial-boundary value problem in the weak form is formulated for the general six-field non-linear theory of branched shell structures. The extended time-stepping algorithm of the Newmark type is worked out for the non-linear dynamic analysis on the configuration space containing the rotation group SO(3). Within the finite element approximation, an accurate indirect C0 interpolation procedure on SO(3) with a transport of approximation domain is developed. Numerical simulations by the finite element method of 2D and 3D large overall motions of several flexible elastic shell structures are presented. It is shown that values of potential and kinetic energies may oscillate in time, but the total energy remains conserved during the free motion of the structures in space.
Rocznik
Strony
341--357
Opis fizyczny
Bibliogr. 20 poz., rys. wykr.
Twórcy
  • Technical University of Gdańsk, Division of Bridges, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland
autor
  • Ruhr University of Bochum, Lehrstuhl fur Allgemeine Mechanik, Universitatstr. 150 IA3, D 44780 Bochum, Germany
  • Polish Academy of Sciences, Instytute of Fluid-Flow Machinery, ul. Gen. J. Fishera, 80-952 Gdańsk, Poland
Bibliografia
  • [1] B. Brank, L. Briseghella, N. Tonello, F.B. Damjanic. On non-linear dynamics of shells: Implementation of energy-momentum conserving algorithm for a finite rotation shell model. International Journal for Numerical Methods in Engineering, 42: 409-442, 1998.
  • [2] C. Cardona, M. Geradin. A beam finite element non-linear theory with finite rotations. International Journal for Numerical Methods in Engineering, 26: 2403-2438, 1988.
  • [3] J. Chróścielewski. The family of C° finite elements in the non-linear six-parameter shell theory (in Polish). Zeszyty Naukowe Politechniki Gdańskiej, No 540, Budownictwo Lądowe, LIII: 1-291, Gdańsk, 1996.
  • [4] J. Chróścielewski, J. Makowski, W.M. Smoleński. On the interpolation in the SO(3) group. In: Proc. XI Polish Conf. on Computer Methods in Mechanics, Vol. I: 187-194, Kielce, 1993.
  • [5] J. Chróścielewski, J. Makowski, H. Stumpf. Genuinely resultant shell finite elements accounting for geometric and material non-linearity. International Journal for Numerical Methods in Engineering, 35: 63-94, 1992.
  • [6] J. Chróścielewski, J. Makowski, H. Stumpf. Finite element analysis of smooth, folded and multi-shell structures. Computer Methods in Applied Mechanics and Engineering, 141: 1-46, 1997.
  • [7] M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, Y.B. Rutitskii, V.Y. Stetsenko. Approximate Solutions of Operator Equations. Wolters—Noordhoff Pub., Groningen, 1972.
  • [8] D. Kuhl, M.A. Crisfield. Energy-conserving algorithms in non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 45: 569-599, 1999.
  • [9] D. Kuhl, E. Ramm. Constraint energy momentum algorithm and its application to non-linear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 136: 293-315, 1996.
  • [10] A. Libai, J.G. Simmonds. The Nonlinear Theory of Elastic Shells, 2nd ed. Cambridge University Press, Cambridge, 1998.
  • [11] I. Lubowiecka. Integration of Non-linear Dynamic Equations of Motion in Structural Mechanics (in Polish). PhD Dissertation, Technical University of Gdańsk, Dept. of Civil Engineering, Div. of Structural Mechanics, 142 pages, December 2001.
  • [12] E. Madenci, A. Barut. Dynamic response of thin composite shells experiencing non-linear elastic deformations coupled with large and rapid overall motions. International Journal for Numerical Methods in Engineering, 39: 2695-2723, 1996.
  • [13] J. Makowski, W. Pietraszkiewicz, H. Stumpf. Jump conditions in the non-linear theory of thin irregular shells. Journal of Elasticity, 54: 1-26, 1999.
  • [14] N.N. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, Proc. ASCE, 85: 67-94, 1959.
  • [15] J.G. Simmonds. The nonlinear thermodynamical theory of shells: descent from 3-dimensions without thickness expansion. In: E.L Axelrad, F.A. Emmerling, eds., Flexible Shells, Theory and Applications, 1-11. Springer-Verlag, Berlin, 1984.
  • [16] J.C. Simo, M.S. Rifai, D.D. Fox. On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non-linear dynamics. International Journal for Numerical Methods in Engineering, 34: 117-164, 1992.
  • [17] J.C. Simo, N. Tarnow. A new energy and momentum conserving algorithm for the non-linear dynamics of shells. International Journal for Numerical Methods in Engineering, 37: 2527-2549, 1994.
  • [18] J.C. Simo, L. Vu-Quoc. On the dynamics in space of rods undergoing large motions — a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 66: 125-161, 1988.
  • [19] J.C. Simo, K.K. Wong. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering, 31: 19-52, 1991.
  • [20] O.C. Zienkiewicz. The Finite Element Method in Engineering Science, 2nd ed. McGraw—Hill, London, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.