PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global optimization in material functions identification for voided media plastic flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present an application of the global optimization method of Boender et al. to a material function identification in a mechanical problem. These material functions are found in the evolution equation for a volume void fraction parameter describing nucleation and growth of microvoids in the flow of porous ductile solids and they play an important role in proper constitutive modelling of postcritical behaviour and fracture. In the evolution equation a plastic strain controlled nucleation process is simulated and uniaxial tension deformation history is considered. In nonlinear regression the minimization of the mean squares functional is assumed. The problem is treated directly as a global optimization one. The necessity of the use of a global optimization approach follows from the hypothesis that there can exist many local minima in the considered problem. The possibility of the existence of many local minima is not usually taken into account. The global optimization method of Boender et al. was applied to minimize the least squares functional. We determine the material functions parameters on the basis of the given Fischer's experimental data set. This data set has been obtained for axisymmetric tension of steel specimens. The results of numerical calculations presented in the paper proved the validity of the hypothesis about the existence of many local minima.
Rocznik
Strony
206--221
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00-049 Warsaw, Poland
  • Institute of Control and Computation Engineeering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] A.A. Afifi, S.P. Azen. Statistical Analysis. A Computer Oriented Approach. Academic Press, New York,
  • [2] A.S. Argon, J. Im. Separation of second-phase particles in spheroidized 1045 steel, Cu-0.6 pct Cr alloy and maraging steel in plastic straining. Metali. Trans., 6A: 839-851, 1975.
  • [3] A.S. Argon, J. Im, R. Safoglu. Cavity formation from inclusions in ductile fracture. Metali. Trans., 6A: 82 1975.
  • [4] C.G. Boender, A.H.G. Rinnooy Kan, L. Strougie, G.T. Timmer. A stochastic method for global optimization Mathematical Programming, 22: 125-140, 1982.
  • [5] P.W. Bridgman. Studies in Large Plastic Flow and Fracture. McGraw-Hill, 1952.
  • [6] C.C. Chu, A. Needleman. Void nucleation effects in biaxially stretched sheets. Trans. A SME, J. Engng. M and Technology, 102: 249-256, July 1980.
  • [7] W. Findeisen, J. Szymanowski, A. Wierzbicki. Theory and Computational Methods of Optimization (in Teoria i Metody Obliczeniowe Optymalizacji). PWN, Warszawa, 1977.
  • [8] J.R. Fisher. Void nucleation in spheroidized steels during tensile deformation. Ph.D. Thesis, Brown U June 1980.
  • [9] R. Fletcher. Practical Methods of Optimization, Second edition. John Wiley & Sons, Chichester, 1987.
  • [10] A.L. Gurson. Continuum theory of ductile rupture by void nucleation and growth. Part 1. Yield criteria and flow rules for porous ductile media. Trans. ASME, J. Engng. Materials and Technology, 99: 2-15, 1977.
  • [11] J. Gurland. Observations on the fracture of cementite particles in spheroidized 1.05%C steel deformed at room temperature. Acta Metall., 20: 735-741, 1972.
  • [12] R,. Hill. Mathematical Plasticity. Oxford Press, 1950.
  • [13] K. Levenberg. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math., 2: 164-168, 1944.
  • [14] D.W. Marquardt. An algorithm for least squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11: 431-441, 1963.
  • [15] A. Needleman, J.R. Rice. Limits to ductility set by plastic flow localization. In: D.P. Koistinen, N.-M. Wang, eds., Mechanics of Sheet Metal Forming, 237-267. Plenum, New York, 1978.
  • [16] P. Perzyna. Constitutive modelling of dissipative solids for postcritical behaviour and fracture. ASME J. Engng. Mater. Technol., 106: 410-419, 1984.
  • [17] P. Perzyna., Z. Nowak. Evolution equation for the void fraction parameter in necking region. Arch. Mech., 39(1-2): 73-84, 1987.
  • [18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 1993.
  • [19] J.W. Rudnicki, J.R. Rice. Conditions for the localization of deformation in pressure-sensitive delatant materials. Journal Mech. Phys. Solids, 23: 371-394, 1975.
  • [20] M. Saje, J. Pan, A. Needleman. Void nucleation effects on shear localization in porous plastic solids. Int. J. Fracture, 19: 163, 1982.
  • [21] F.J. Solis, R.J-B. Wets. Minimization by random search techniques. Math. Operations Research, 6(4): 19-30, 1981.
  • [22] A. Stachurski, A.P. Wierzbicki. Introduction to Optimization (in Polish: Podstawy Optymalizacji). Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1999.
  • [23] A. Tórn, A. Žilinskas. Global Optimization. Springer Verlag, Berlin, Heidelberg, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.