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DETERMINING TRANSITION PROBABILITIES
IN PROBABILISTIC ALGORITHMS

Abstract: The main problem of the paper is related to the algebraic method for determin-
ing transition probabilities in probabilistic algorithms interpreted in finite structures. The
correctness of this method is based on a lemma stating that the determinant of a matrix
(being of a special form) is different from zero. The paper contains two proofs of this
lemma, formulated without a proof in [3].
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1. Introduction

Statistics plays an important part both in our everyday life and in the science.
It permits “deriving knowledge” included in huge sets of data and studying differ-
ent correlations and relationships. Statistical technologies support different kinds of
researches and diagnosis. Results and analyses of results obtained in this way can
be used in solutions of different kind of problems in the future. This motivates us
to concentrate our interests on the so-called “probabilistic algorithms”, which take
into consideration dynamically changing situations (of analyzed occurrence), and
also different possibilities of developing of the actual situation. The algorithms
consider not only state in a given moment, but also sequences of successive chan-
ges. The analysis of changes occurring one after another (e.g., analysis of changes
of the weather in a given area) causes most problems in detecting regularities in
them. We replace determinism with probabilistic solution because determinism
does not take random factors into consideration and it does not account for
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uncertainty. However, uncertainty is related with every researched occurrence in
the real world.

Summing up, probabilistic algorithms are useful in analysis of incomplete in-
formation. We use probabilistic technologies in simulation of real processes, for
which empirical collected of data is very expensive, time-consuming or even com-
pletely impossible.

In the present paper iterative probabilistic algorithms are understood as itera-
tive programs using typical program constructions:

x:=a,
begin ... end,
if ... then ... else ...,
while ... do ...,

and two probabilistic constructions:
x=7,
either,y ... or ...

interpreted as follows: the first construction corresponds to a random generation of
a value of the variable x and the first part of the second construction is chosen with
the probability p (the second one is chosen with the probability 1-p).

For a finite interpretation of an algorithm K(x,...,x;) in a finite set

A=(ay,...,a;) we have n=t" possible valuations of variables from

X< (x|,-.-,xp) . Let us denote them by vy,...,v,.

The main fact, which uses essentially the aforementioned LEMMA, concerns
the following procedure of algebraization (cf. Lemma 3.2 in [3]) consisting in as-
sociating with every program K a nXn matrix K where k;; denotes the probability

of passing from an initial valuation v; to a final valuation v;.
For each probabilistic program K(x|,...,x,) interpreted in a finite universe

A=(ay,...,a;) we can construct, in an effective way, a nXxn matrix

k=l

Y4, j=1,..,n
as the input valuations are equal py,..., p,, respectively, then the probabilities

(where n= % ), such as if the probabilities of appearing vi,...,v,

q1,---,9, of appearing vj,...,v,, as output valuations satisfy:

[qla---yqn]':[pl,...,pn]o]{‘

This fact can be illustrated as follows:

; qj ..
V; Py, K L, vj,z,j=l,...,n.
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The construction of the matrix K for a given program K is inductive with re-
spect to the number of program constructions used in K. The most difficult case is
when K is of the form while y do M.

Suppose (inductively) that we have given the matrix for the program M. If
denote by [Y?] subprogram while —y do x:=x; then the matrix K for the pro-

gram K is defined as follows (cf. [3]):

where K; denotes the matrix corresponding to the program:
begin [y?] if y then M, ... ; [y?] if y then M, [—y?]; end,

i—times

Now, we describe an effective method which enables us to determine the ma-
trix K in a finite number of steps is described in [3]. The starting point is the

equivalence of the program K of the form while y do M and the following
program:
if y then begin M; while vy do M; end,.
K

This equivalence motivates the following equation:

K:I_,},+I},0M0K,
where

/ _|I for i=j and the valuation v; satisfies the condition y
(/T otherwise

This equation may be written in the equivalent way as

(-1, o M)oK =1_,.

Since the determinant of the matrix /-/, o M (denoted by det(/-/, e M)) may

be equal to 0, to determine the matrix K, we need a more subtle analysis described
in details in [3].
Speaking informally, an effective classification is realized and suitable posi-
tions of matrix M are determined in the following way:
— First, we determine positions equal to 1 (corresponding to valuations which are
not satisfying v (final states)).
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- Next, we put the 0's at positions corresponding to initial valuations, for that all
computations are infinite (looping states).

— The remaining part of the matrix M (not looping states) is of the form men-
tioned in LEMMA, which enables to determine its positions.

1.1.Example

Let K denote the program
while x#3 do
if x=1 then x:=7;

including one variable interpreted in finite 3-element universe. Let [é % %] be

distribution of probability of variable x for instruction x:=7?.
If denote by M the subprogram if x=1 then x:=7? then it is easy to deter-

'y

0 | (cf. [3]).

0 0 1
7k )
0 0 0

0 0 1

mine, that M is of the form

Since the determinant of the matrix [-/,, o M = is equal to

zero, thus we determine the matrix K using mentioned procedure. In the case of the
program K we have the following states:
- vy(x)=1 (not looping),
- v{x)=2 (looping),
- w(x)=3 (not looping),
thus the matrix K is of the form
0 0 ?
K=|0 0 0f.
0 0 1

The remaining part of K denoted by “?” is of the form mentioned in LEMMA,

which enables to determine this position.
0
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Thus, the analysis of probabilistic algorithms essentially depends on the
LEMMA. It is formulated in [3] without a proof. This paper contains two proofs of
the LEMMA: algebraic and analytical. The sketch of analytical proof has been
known since 1993. The question concerning the elementary proof remains open
until 1999 (this proof is contained in [1]).

1.2.LEMMA
The determinant of the matrix:
l—mH —my -~y
-m 1—m e. —m
M= 21 22 2n where
— My my> 1 Myn
m,~j20, Lj=1..,n; (1.1)
n
Zm,-j<l, i=1,...,n (1.2)
J=

is positive,
0
Element m;; in the LEMMA means the probability of the transition from the

state i to the state /.

2. An algebraic proof of the LEMMA

For more readable notation of the proof, we can formulate the LEMMA as fol-
lows:
Let M, be a nxn matrix M. Denote by /4(M,n) (inductive assumption) the

properties denoted above by (1.1) and (1.2), ie,, m; 20 for i,j=1,...,n and

n

S my; <1 fori=1,...,n.

j=1

If the matrix M, has the properties [4(M,n) then detM, >0.

Let us denote elements of the matrix M, by Lijs where i,j=1,...,n.

11
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We get the matrix:

FIH Hho ... 4Ly 1—)71” —mjy LT

ty Iy . fyp| |mmy L=myy o —myy,
M, = = ’

Ul T2 o gn| | Mg —myp o Lemy,

where properties /A(M,#n) may be written:

n n
- X;>0,fori=l..,n; (because 1= 3 my; >0, i=1,...,n)(2.1)

j=l j=1

t; >0, fori=1,..,n; (from (1.1) and (1.2)); (2.2)

f!'/'SO, for iij, L_/-:]’_”,n; (from(ll)) (23)

The proof proceeds by induction on the number » — the common length of
rows and of columns. Let us assume that the thesis of the LEMMA is valid for
each nXn matrix satisfying condition IA(M,n).

The fact is obvious for n=1.

Let us consider a (n+1)x(n+1) matrix M, ., with following properties

IAM, n+1):
n+l
- 3 lj >0, fori=1...,n+1;
J=1
t; >0, fori=1,....,n+1;
r,-jso, fori#j,i,j=1L...,n+1.

After the first step of the Gauss Elimination Method we get the following ma-
trix:

EID hy o L . Nnel |

0 fy fy ety e
I T SV
My =1 ...

0t Gy el iy

| 0 faria fael3 o lpslj oo t;r+ln+lj
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' t
where 7;; :t,-j—tlj-t’—l
1

We shall prove that the nx» matrix:

for i=2,...,n+1, j=1,...,n+1.

I i3 B2
S= o o - Byt Bl
Snl Snn
Lt'n+12 e et i
satisfies the conditions /4(M,n) .
Consider the first row of the matrix S.
Observe that —:LIZO for i=2,...,n+1 and let a; =—?l— i=2,...,n+1.
11 11

This means that (2.1) holds for the first row of S:
Sppto Sy, =ttt =yt +a2(112 +"'+tln+l) >0.

Similarly, we can prove (2.1) for i = 2,...,n.
Now, consider the first element of the diagonal in S:

=ty =ty —t5 2L
Sii=hy=hr—1
n

n
Denote by ¢; =1~ 3 mg; where i =1,...,n. By virtue of (1.2) we have €; >0.

Jj=I1
Then .
- n=l-myy=mpyp+my+.. +tmpyu t+E,
- N =-mpy,
- Ihy=-my,

- 122:1—m22=m21+m23+...+m2n+1+82.

Thus
S =0 = M3t My 8y +’"21[1‘ myy +mpy +m12+m1 ol +glj>0
oty
because
121 T2 20

mpytmp3+... My, €
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This means that the first element of the diagonal of S is positive.

Analogously, we can prove that all elements on the diagonal of S are positive,
1e., s; >0 for i=2,...,n. Thus S satisfies (2.2).

In an analogous way we can show (2.3) (the remaining elements of the matrix
are less than or equal to zero, because we subtract positive values from negative
values):

S‘Ij =ti+1j+] <0 for l.:ttj, i,j=l,...,n;

Thus, we can apply the inductive assumption to the above matrix S, being part
of the matrix M,,,,, because the matrix satisfies conditions /4(M,n) .
Thus detS > 0. Therefore,
detM, ;| =1, -detS>0.
By virtue of the principle of induction, the Lemma is valid for each nxn ma-
trix satisfying condition JA(M,#n).
0

3. The analytical proof of the LEMMA

We start with an illustration for n=2.

1 —my —mp .
Let My = be a matrix.
—myy  1—my
& =1-(myy +mp3) .
Denote by . By virtue of (1.2) we haveg,,&, >0.
€y =1~ (my +mp))

Consequently, det M, can be written as:

mpp +€& . —mypy

det M, = =myp€y + My €] + €€ .

—mpyy my t+€)

Since myy,my; 20, then det M, >0.
We illustrate this fact on the figure below. det M, is treated as a function of
myy,ny,y, F(m,;_,mzl) :dCtM2 (03”’1]2,”’12) < l)

14
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F(m;, m,p=detM,

my,

I 1. Graph of function F(m,,my)=detM, for
nyp, Moy 20 and E|,82 >0

[t is easy to observe, that F has the minimum at (0,0), moreover, the mini-
mum is positive. Thus all values of F are positive. This means that detA, >0
provided that the elements of M, satisfy (1.1) and (1.2)

Let M, bea nxn matrix.

The proof proceeds by induction on n. Assume that:

l—mH —mpy —my
— My l—mzz — Moy

>0
—mk| — My l—mkk

for all the determinants of this form (satisfying the assumptions of LEMMA) for
k<n.

h
Denote by ¢; =1- 3 my where i=1,...,n.
J=1
Thus l—m“' =mptmpyy oo tmy o tmyg o m, T E;
By virtue of (1.2) we have ¢; >0.
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where €; >0, i=1,.

Thus the determinant of the matrix M, can be written as:

Mg t...+my, +§ —mypy - my,
—my myythmyy+...tmy, +€y ... —hmy,
detM, =
—m,, -myy m,, +...+m,1,n_| +€”

Loh.

Let us denote the vector by

r71=(ml],...,mln,mzl,mzz,...,mzn,.‘.,mnl,...,mnn),where m;; (i=1,...,n)
means, that m does not contain the element m;; .

Let us treat the determinant of M,, as the function of m :

det Mn = F(l’;’l) = F(ml1,...,mln,mzl,mzz,...,mzn,...,mnl,...,mnn) .

16

Let us determine the derivative

ddet M,
m 2

Since element m), appears in the first row only, we obtain:

1

ddet M, |~"21

8m12

My

-1

my|+myy+...tmp,+€

— My

— Moy

my +...+m,,,,,_, + €,

After adding the first and second columns we obtain:

ddet M,
amlz

1

—myy

My

0

myy+...+my, +€

= (myuy +my)

— My,

my +...+mn,n_1 + €,
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After applying the Laplace's development to the first row we obtain:

my3+...tmy, +€9 —myy —mMy,
ddetM, | —(myitmyp)  mytotmy,tes -3,
amlz
_(mn|+m,,2) —m,3 (m,,1+mn2)+‘..+m,,,n_]+sn

If we denote:

myy =I-(m23+...+m2,, +82) ny3 = N3 ny, =my,
myy =my | +my) m33=1—(m31+...+m3n+83) my,, =my,
My =My + 1 M3 =M oo Mgy =l=(my +.tmy, , +E,)

then we can write:

1—m22 —Mmy3 —my,

adetMn_ —ms3s 1'—)7133 —m3,
3m|2

-myy  —myz ... 1-my,

It's easy to verify that this determinant satisfies the assumptions of LEMMA, e.g.,
for i =2 we have:

myy +my3 +...+m2,,=1—(m23 +...tmy, +Ey)+my3 +...+m2n=1—82<1.

Analogously, we can show this fact for i=3,...,#. In this way we have obtained

the (n—1)x(n—1) determinant of a (n—1)x(n~1) matrix being in the form inves-

ddet M,
m?2

tigated in Lemma, therefore by the inductive assumption we obtain >0,

Analogously, we can prove that:

ddet M,,

>0, where i,j=1,...,n,and i # j.

Similarly to the case of two variables we shall argue that the function F(m)
has its minimum value at the point (0,...,0), i.e. F(m)> F(0,...,0).

17
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By the definition of F we have:
F(@O,...0)=¢;-...-&,;

Now, let us consider Taylor's formula for the function F around the point
0,...,0) for n=1:

_ n QF (O n OF (O
Fei) = F0,...00+ 3 9EC )-m,.jze,-...-e,,+ 5 9F( )-m,-j-, (3.1)
ij=1 Imj ij=t Oy
i#j i+j

n n
Since ¥ my; <1, i=1,..,n,and 0<0<]1,then Zemij <l,fori=1,...,n.

j=1 J=l
Since Odet M, = OF () >0, i,j=1...,n and i#j, we have that
am,-j am,-j
OF (6r) >0, where 7,7 =1,...,n and [ # j. Then, according to (3.1):
F(m)>¢g-...-€,>0.

Since at the point (0,...,0) the function has the minimum (in its domain), with
positive value at the point (0,...,0), then for all m belonging to the domain of the
function F F(m) >0 and therefore det M, = F(m)>0.

Thus, we have proved the LEMMA for the nxn matrix M,,, e, detM, >0.

O
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WYZNACZANIE PRAWDOPODOBIENSTW PRZEJSC
W ALGORYTMACH PROBABILISTYCZNYCH

Streszczenie: Ponizsza praca zawiera dwa dowody lematu opublikowanego w pracy [3]
bez dowodu. Algebraiczny fakt rozwazany w lemacie jest punktem wyjsciowym dla me-
tody wyznaczania prawdopodobienstw przejs¢ w iteracyjnych algorytmach probabili-
stycznych interpretowanych w skonczonych dziedzinach. Dotyczy on niezerowosci wy-
znacznika macierzy o pewnej specyficzne] postaci.

Stowa kluczowe: algorytm probabilistyczny, program probabilistyczny, stan koncowy,
stan petlacy, stan nie petlacy

19



