Identyfikatory
Warianty tytułu
Konferencja
International Conference on Numerical Mathematics and Computational Mechanics : NMCM'98 (8 th ; August 1998 ; Miskolc ; Hungary)
Języki publikacji
Abstrakty
In this paper the dynamic behaviour of a continuum inextensible pipe containing fluid flow is investigated. The fluid is considered to be incompressible, frictionless and its velocity relative to the pipe has the same but time-periodic magnitude along the pipe at a certain time instant. The equations of motion are derived via Lagrangian equations and Hamilton's principle. The system is non-conservative, and the amount of energy carried in and out by the flow appears in the model. It is well-known, that intricate stability problems arise when the flow pulsates and the corresponding mathematical model, a system of ordinary or partial differential equations, becomes time-periodic. The method which constructs the state transition matrix used in Floquet theory in terms of Chebyshev polynomials is especially effective for stability analysis of systems with multi-degree-of-freedom. The stability charts are created w.r.t. the forcing frequency omega, the perturbation amplitude nu and the average flow velocity U.
Rocznik
Tom
Strony
487--494
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
- Department of Applied Mechanics, Technical University of Budapest, Budapest, H-1521, Hungary
Bibliografia
- [1] T.B. Benjamin. Dynamics of system of articulated pipes conveying fluid, I-II. Proceedings of the Royal Society of London, Series A261: 457-499, 1961.
- [2] R.D. Blevins. Flow-Induced Vibration. Van Nostrand Reinhold, New York, 1990.
- [3] M. Farkas. Periodic Motions. Springer-Verlag, New York, 1994.
- [4] G.W. Housner. Bending vibrations of a pipe line containing flowing fluid. Journal of Applied Mechanics, 19: 205-208, 1952.
- [5] M.P. Paidoussis, C. Sundararajan. Parametric and combination resonances of a pipe conveying pulsating fluid. Journal of Applied Mechanics, 42(4): 780-784, 1975.
- [6] M.P. Paidoussis, N.T. Issid. Experiments on parametric resonance of pipes containing pulsatile flow. Journal of Applied Mechanics, 98(2): 198-202, 1976.
- [7] M.P. Paidoussis, G.X. Li. Pipes conveying fluid: a model dynamical problem. Journal of Fluids and Structures, 7: 137-204, 1993.
- [8] R. Pandiyan, S.C. Sinha. Analysis of time-periodic nonlinear dynamical systems undergoing bifurcations. Non- linear Dynamics, 8: 21-43, 1995.
- [9] C. Semler, G.X. Li, M.P. Paidoussis. The non-linear equations of motion of pipes conveying fluid. Journal of Sound and Vibration, 169(5): 577-599, 1994.
- [10] C. Semler, M.P. Paidoussis. Parametric resonances of a cantilevered pipe conveying fluid: a nonlinear analysis. ASME/Design Engineering Technical Conferences, DE-Vol.84-1, Vol. 3 - Part A: 325-331, 1995.
- [11] S.C. Sinha, D.-H. Wu. An efficient computational scheme for the analysis of periodic systems. Journal of Sound and Vibration, 151: 91-117, 1991.
- [12] H. Troger. Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists. Springer-Verlag, Wien, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0002-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.