Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Numerical Mathematics and Computational Mechanics : NMCM'98 (8 th ; August 1998 ; Miskolc ; Hungary)
Języki publikacji
Abstrakty
We present a two-dimensional discrete model of solids that allows us to follow the bahavior of the solid body and of the fragments well beyond the formation of simple cracks. The model, consisting of polygonal cells connected via beams, is an extension of discrete models used to study granular flows. This modeling is particularly suitedfor the simulation of fracture and fragmentation processes. After calculating the macroscopic elastic moduli from the cell and beam parameters, we present a detailed study of an uniaxial compression test of a rectangular block, and of the dynamic fragmentation processes of solids in various experimental situations. The model proved to be successful in reproducing the experimentally observed subtleties of fragmenting solids.
Słowa kluczowe
Rocznik
Tom
Strony
385--402
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Institute for Computer Applications (ICA 1), University of Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
- Department of Theoretical Physics, Kossuth Lajos University, P.O.Boz 5, H-4010 Debrecen, Hungary
autor
- Institute for Structural Mechanics, University of Stuttgart, Pfaffenwaldring 7, D-70550 Stuttgart, Germany
autor
- Institute for Computer Applications (ICA 1), University of Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
autor
- Institute for Structural Mechanics, University of Stuttgart, Pfaffenwaldring 7, D-70550 Stuttgart, Germany
Bibliografia
- [1] N. Arbiter, C.C. Harris, G.A. Stamboltzis, Single fracture of brittle spheres. Soc. of Min. Eng., 244: 119-133, 1969.
- [2] Y.M. Bashir, J.D. Goddard, A novel simulation method for the quasi-static mechanics of granular assemblages. J. Rheol., 35: 849-885, 1991.
- [3] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblages. Géotechnique, 29: 47-65, 1979.
- [4] P.A. Cundall, Numerical experiments on localization in frictional materials. Ingenieur-Archiv, 59: 148-159, 1989.
- [5] A. Fujiwara, A. Tsukamoto, Experimental study on the velocity of fragments in collisional breakup. Icarus, 44: 142-153, 1980.
- [6] H.J. Herrmann, A. Hansen, S. Roux, Fracture of disordered elastic lattices in two dimensions. Phys. Rev., B 39: 637-643, 1989.
- [7] H.J. Herrmann, S. Roux (eds.), Statistical Models for the Fracture of Disordered Media. North Holland, Amster- dam, 1990.
- [8] F. Kun, H.J. Herrmann, A study of fragmentation processes using a discrete element method. Comput. Meth. Appl. Mech. Eng., 138: 3-18, 1996.
- [9] F. Kun, H.J. Herrmann, Fragmentation of colliding discs. Int. Jour. Mod. Phys., C 7: 837-855, 1996.
- [10] K.B. Lauritsen, H. Puhl, H.J. Tillemans, Performance of random lattice algorithms. Int. J. of Mod. Phys., C 5: 909-922, 1994.
- [11] T. Matsui, T. Waza, K. Kani, S. Suzuki, Laboratory simulation of planetezimal collisions. J. of Geophys. Res., 87 B13: 10968-10982, 1982.
- [12] M. Matsushita, T. Ishii, Fragmentation of Long Thin Glass Rods. Department of Physics, Chuo University, 1992.
- [13] L. Oddershede, P. Dimon, J. Bohr, Self-organized criticality in fragmenting. Phys. Rev. Lett., 71: 3107-3111, 1993.
- [14] A.V. Potapov, M.A. Hopkins, C.S. Campbell, A two-dimensional dynamic simulation of solid fracture, Part I: Description of the model. Int. J. of Mod. Phys., C 6: 371-398, 1995.
- [15] A.V. Potapov, M.A. Hopkins, C.S. Campbell, A two-dimensional dynamic simulation of solid fracture, Part II: Examples. Int. J. of Mod. Phys., C 6: 399-425, 1995.
- [16] S. Roux, Continuum and discrete description of elasticity and other rheological behavior. In [7]: 87-113.
- [17] C. Thorton, K.K. Yin, M.J. Adams, Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D. Appl. Phys., 29: 424-435, 1996.
- [18] H.J. Tillemans, H.J. Herrmann, Simulating deformations of granular solids under shear. Physica, A 217: 261- 288, 1995.
- [19] D.L. Turcotte, Fractals and fragmentation. J. of Geophys. Res., 91 B2: 1921-1926, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0002-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.