PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some remarks on the applicability of rectangular elements to plane strain boundary value problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is the discussion on the applicability of some rectangular elements to plane strain boundary value problems. Four different elements were considered: 4-node, 5-node, Serendipity 8-node and Lagrangian 9-node. Two cases: the material layer loaded by a concentrated vertical force and the same layer loaded by a symmetrical rigid punch were discussed. An elastic material was used to avoid the influence of the constitutive model on solutions. To model interface behaviour on the contact surface a Coulomb friction condition was applied. The use of the 4- and 5-node elements resulted in the prediction of the 'island' pattern of stress and strain tensors distributions and their non-applicability was proved independently from the boundary condition. The 8-node element predicted erroneous distributions of nodal forces and should be avoided in the case of contact problems. Among the discussed group of elements only the 9-node element turned out to be applicable for boundary value problems under plane strain condition.
Rocznik
Strony
299--309
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Science, ul. Świętokrzyska 21, 00-049 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Science, ul. Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • [1] A. Jarzębowski and Z. Mróz. A constitutive model for sands and its application to monotonic and cyclic loading. Proc. Constitutive Equations for Granular Non-Cohesive Soils, Saada and Bianchini (eds.), Balkema, Rotterdam, 307-323, 1988.
  • [2] A. Jarzębowski and J. Maciejewski. Compaction of a cohesive soil layer under a rigid roll experiment and numerical prediction. XIX-th ICTAM, Kyoto, Japan, 25-31 August 1996.
  • [3] E. Hinton and D.R.J. Owen. An Introduction to Finite Element Computations. Pineridge Press Limited, Swansea, 1979.
  • [4] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. 4-th edition, Mc Graw-Hill, New Jersey, 1989.
  • [5] J.T. Oden and J.N. Reddy. An Introduction to the Mathematical Theory of Finite Elements. John Wiley and Sons, New York, 1976.
  • [6] S.W. Sloan and M.F. Randolph. Numerical prediction of collapse loads using finite element methods. Int. J. Num. Anal. Meth. Geom., 6: 47-76, 1982.
  • [7] K.J. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Clifis, New Jersey, 1976.
  • [3] R.D. Cook, D.S. Malkus and M.E. Plesha. Concepts and Applications of Finite Element Analysis. 3-rd edition, John Wiley and Sons, Inc., New York, 1989.
  • [9] T.J.R. Hughes. The Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
  • [10] R.. de Borst A.E. Groen. Element performance in soil and rock plasticity. Numerical Methods in Geomechancs-NUMOG JV, Pande and Pietruszczak (eds.), Balkema, Rotterdam, 411-416, 1995.
  • [11] T.J.R. Hughes. Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media. Int. J. Num. Meth. Eng., 15: 1413-1418, 1980.
  • [12] E.L. Wilson, R.L. Taylor, W.P. Doherty J. Ghaboussi. Incompatible Displacement Modes, in Numerical and Computer Models. In: Structural Mechanics. Fenves, Perrone, Robinson and Schnobrich (eds.), Academic Press, New York, 43-57, 1973.
  • [13] R.L. Taylor, P.J. Beresford and E.1. Wilson. A Nonconforming Element for Stress Analysis. Int. J. Num. Meth.Eng., 10: 6, 1211-1219, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.