PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The space-time approach to rail/wheel contact and corrugations problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a space-time discrete modeling of the dynamic rail-wheel contact problem and an analysis of the induced corrugations. First, the space-time approach to simple contact problems is presented. Then, the resulting differential equation of motion is solved by discrete time integration. An arbitrary mesh modification, both in time and space, enables an easy modeling of rapidly varying contact zone. The velocity formulation is used and the discontinuity of the velocity in the contact is removed by a special algorithm. Finally the discussed technique is used to simulate interaction of the elastic wheel and rigid rail. It is shown that the contact force oscillates and the material of the wheel rotates oscillatory.
Słowa kluczowe
Rocznik
Strony
267--283
Opis fizyczny
Bibliogr. 29 poz., il., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • [1] K. Knote and K. Hempelmann. The formation of corrugation pattern on the rail tread. A linear theory. In: 2nd Polish-German Workshop on Dynamical Problems in Mechanical Systems, 77-91, IPPT PAN, Warszawa, 1991.
  • [2] U. Finberg. Noise generation of railways wheels. In: 2nd Polish-German Workshop on dynamical Problems in Mechanical Systems, 93-104, IPPT PAN, Warszawa, 1991.
  • [3] K. Knothe. Rail Corrugations. ILR. Bericht 56, Berlin, 1983. |
  • [4] B. Ripke and K. Knothe. High frequency wehicle-track interactions in consideration of nonlinear contact me- chanics. In: 3rd Polish-German Workshop on dynamical Problems in Mechanical Systems, 207-218, IPPT PAN, Warszawa, 1993.
  • [5] O. Mahrenholtz, J. Rońda, R. Bogacz and M. Brzozowski. Finite deformation in the rolling contact problem. In: Proc. Int. Conf. on Nonlinear Mechanics, 290-295, Shanghai, October 1985. .
  • [6] T. Hirakawa, F. Fujita, m. Kamata and Y. Yamada. Analysis of strip rolling by the finite element method. In: Advanced Technology of Plasticity, vol. II, 1132-1137, 1984.
  • [7] R. Bogacz, J. Rońda and M. Brzozowski. Corrugations in rolling contact problems. ZAMM, 67(11): 567-568, 1987.
  • [8] R. Bogacz, M. Brzozowski, O. Mahrenholtz and J. Rońda. Dynamic effects in a rolling contact problem. ZAMM, 67(4): T176-T179, 1987.
  • [9] R.I. Maier. Natural frequency of rail track and its relationship to rail corrugation. In: Rail Research Papers of B.H.P. Steel International Group, 89-103, Melbourne, 1976.
  • [10] R. Bogacz, P. Meinke and S. Dzula. Vehicle/track-dynamic interaction for high speed frequency range. In: 3rd Polish-German Workshop on dynamical Problems in Mechanical Systems, 165-179, IPPT PAN, Warszawa, 1993.
  • [11] C.I. Bajer. Triangular and tetrahedral space-time finite elements in vibration analysis. Int J. Numer. Meth. Engng., 23: 2031-2048, 1986.
  • [12] C.I. Bajer. Notes on the stability of non-rectangular space-time finite elements. Int. J. Numer. Meth. Engng., 24: 1721-1739, 1987.
  • [13] C.I. Bajer. Adaptive mesh in dynamic problem by the space-time approach. Comput. and Struct., 33(2): 319- 325, 1989.
  • [14] C.I. Bajer, R. Bogacz and C. Bonthoux. Adaptive space-time elements in the dynamic elastic-viscoplastic problem. Comput. and Struct., 39: 415423, 1991.
  • [15] C.I. Bajer and C. Bohatier. The soft way method and the velocity formulation. Comput. and Struct., 55(6): 1015-1025, 1995.
  • [16] C. Bohatier. A large deformation formulation and solution with space-time finite elements. Arch. Mech., 44: 31-41, 1992.
  • [17] A. Podhorecki. The viscoelastic space-time element. Comput. and Struct., 23: 535-544, 1986.
  • [18] C.I. Bajer and C.G. Bonthoux. State-of-the-art in true space-time finite element method. Shock Vibr. Dig., 20: 3-11, 1988.
  • [19] C.I. Bajer and C.G. Bonthoux. State-of-the-art in the space-time element method. Shock Vibr. Dig., 23(5): 3-9, 1991.
  • [20] C.I. Bajer and A. Podhorecki. Space-time element method in structural dynamics. Arch. of Mech., 41: 863-889, 1989.
  • [21] C. Bohatier and C. I. Bajer. Kinematic approach for dynamic contact problems — the geometrical soft way method. Engng. Trans., 43(1-2): 101-111, 1995.
  • [22] C.I. Bajer Space-time finite element formulation for the dynamical evolutionary process. Appl. Math. and Comp. Sci., 3(2): 251-268, 1993.
  • [23] H.M. Hilber, T.J.R. Hughes and R.1. Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engng and Struct. Dyn., 5: 283-292, 1977.
  • [24] C.I. Bajer and R. Bogacz. New formulation of the space-time finite element method for problems of evolution. Arch. Mech., 46(5): 775-788, 1994.
  • [25] N.-E. Wiberg, L. Zeng and X. Li. Error estimation and adaptiwity in elastodynamics. Comput. Meth. Appl. Mech. Engng., 101: 369-395, 1992.
  • [26] L.F. Zeng and N.-E. Wiberg. Spatial mesh adaptation in semidiscrete finite element analysis of linear elastody- namic problems. Comp. Mech., 9(5): 315-332, 1992.
  • [27] L.F. Zeng, N.-E. Wiberg and L. Bernspang. An adaptative finite element procedure for 2D dynamic transient analysis using direct integration. Int. J. Numer. Meth. Engng., 34: 997-1014, 1992.
  • [28] J.T. Oden and T.1. Lin, On the general rolling contact problem for finite deformations of viscoelastic cylinder. Comput. Meth. Appl. Mech. Engng., 57: 297-367, 1986.
  • [29] N. Kikuchi and J.T. Oden. Contact problems in elasticity: a study of variational inequalities and finite element method. SIAM, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.