Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Numerical Mathematics and Computational Mechanics (7 ; July 1996 ; Miskolc ; Węgry)
Języki publikacji
Abstrakty
Many numerical methods for studying chemical reaction problems require the computation of the eigenvalues of very large complex symetric matrices. Recently, a new algorithm for this problem has been proposed by Bar-On and Ryaboy [3]. This algorithm is similar in concept and complexity to the Hermitian eigensolver and is based on application of complex orthogonal transformations to preserve symmetry and recovery transformations to preserve stability. We demonstrate the performance of the proposed algorithm on several high performance computers from Digital, SGI, and Cray . The results show that the new algorithm is much faster than the general eigensolver, the present method used for solving these problems.
Rocznik
Tom
Strony
85--92
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
- Department of Chemistry, Technion Institute of Technology, Haifa 32000, Israel
autor
- Department of Computer Science and Statistics, University of Southern Mississippi, Hattiesburg, MS 39406, USA
Bibliografia
- [1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen. LAPACK Users’ Guide, SIAM, 1992.
- [2] E. Balslev, J. Combes. Spectral properties of many body Schroedinger operators with dilation analytic interactions. Commun. Math. Phys., 22: 280-294, 1971.
- [3] I. Bar-On, V. Ryaboy. Fast diagonalization of large and dense complex symmetric matrices, with applications to quantum reaction dynamics. SIAM J. on Scientific Computing, 18: 1412-1435, 1997.
- [4] D. Brown, J. Light. Evaluation of thermal rate constants in the eigenbasis of a Hamiltonian with an optical potential. J. Chem. Phys., 97: 5465-5471, 1992.
- [5] J.K. Cullum, R.A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalues Computations. Birkhauser, Boston, 1985.
- [6] G.H. Golub, C.F.V. Loan. Matriz Computations. The Johns Hopkins University Press, 1989.
- [7] Y. Ho. The method of complex coordinate rotation and its applications to atomic collision processes. Phys. Rep. C, 99: 1-68, 1983.
- [8] G. Jolicard, E. Austin. Optical potential stabilization method for predicting resonance levels. Chem. Phys. Lett., 121: 106-110, 1985.
- [9] B. Junker. Recent computational developments in the use of complex scaling in resonance phenomena. Adv. At. Mol. Phys., 18: 207-263, (1982).
- [10] D.N.I. Last, M. Baer. The application of negative imaginary arrangement decoupling potential to reactive scattering: conversion of a reactive scattering problem into a bound-type problem. J. Chem. Phys., 96: 2017- 2024, 1992.
- [11] N. Lipkin, N. Moiseyev, C. Leforestier. A three dimensional study of NeICl predissociation resonances by the complex scaled discrete variable representation method. J. Chem. Phys., 98: 1888-1901, 1993.
- [12] N. Moiseyev. Resonances, cross sections and partial widths by the complex coordinate method. Isr. J. Chem., 31: 311-322, 1991.
- [13] D. Neuhauser, M. Baer. The time-dependent Schroedinger equation: application of absorbing boundary condition. J. Chem. Phys., 90: 4351-4355, 1989.
- [14] M. Paprzycki, C. Cyphers. Multiplying matrices on the Cray - Practical considerations. CHPC Newsletter, 1991.
- [15] W. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics. Annu. Rev.. Phys. Chem., 33: 223-255, 1982.
- [16] V. Ryaboy, N. Moiseyev. Cumulative reaction probability from Siegert eigenvalues: model studies. J. Chem. Phys., 98: 9618-9623, 1993.
- [17] V. Ryaboy, N. Moiseyev. Three dimensional study of predissociation resonances by the complex scaled discrete variable representation method: HCO/DCO. J. Chem. Phys., 103: 4061-4067 1995.
- [18] T. Seideman, W. Miller. Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary condition. J. Chem. Phys., 96: 4412-4422, 1992.
- [19] J. Simon. Quadratic form techniques and the Balslev-Combes theorem. Commun. Math. Phys., 27: 1-9, 1972.
- [20] J. Simon. Resonances in n-body quantum systems with dilation analytic potentials and the foundations of time dependent perturbation theory Ann. Math., 97: 247-274, 1973.
- [21] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, 1965; reprinted in Oxford Science Publications, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0131
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.