PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

D-adaptive model for the elasticity problem

Wybrane pełne teksty z tego czasopisma
Konferencja
International Conference on Numerical Mathematics and Computational Mechanics (7 ; July 1996 ; Miskolc ; Węgry)
Języki publikacji
EN
Abstrakty
EN
The paper presents some aspects of the formulation and numerical implementation of combined mathematical model 'elastic body - Timoshenko plate'. The variational problem is formulated. The existence of solution of combined model is considered. The numerical investigation of the problem is performed by coupling Direct Boundary Element and Finite Element Methods. Numerical example is presented supporting the analysis.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • Department of Applied Mathematics, State University of Lviv, Lviv, Ukraine, 290602
autor
  • Department of Applied Mathematics, State University of Lviv, Lviv, Ukraine, 290602
Bibliografia
  • [1] P.G. Ciarlet. Plates and Junctions in Elastic Multi-Structures. Paris, 1990.
  • [2] P.G. Ciarlet, H. Je Dret, R. Nzengwa. Junctions between three-dimensional and two-dimensional linearly elastic structures. J. Math. Pures et Appl, 3: 261-295, 1989.
  • [3] M. Costabel, E.P. Stephan. Coupling of finite element and boundary element methods for an elasto-plastic interface problem. Preprint No. 1137, Darmstadt, May 1988.
  • [4] V. Liantse, O. Storoz. About one non-classic boundary value problem of the plate theory. Proc. of National Academy of Sciences of Ukraine, N2, 15-17, 1989.
  • [5] H.A. Mang, P. Torzicky, Z.Y. Chen. On the mechanical inconsistency of symmetrization of unsymmetric coupling matrices for BEFEM discretizations of solids. Computat. Mech., 4: 301-308, 1989.
  • [6] P. Parreira, M. Guiggiani. On the implementation of the Galerkin approach in the boundary element method. Comput. and Struct., 33(1): 269-279, 1989.
  • [7] A. Quarteroni. Multifields modeling in numerical simulation of partial differential equations. GAMM-Mitteilungen, Heft 1, 45-63, 1996.
  • [8] K. Rectorys. Vartational Methods in Mathematics. Science and Engineering. Prague, 1980.
  • [9] Y.G. Savula. Numerical analysis on the base of combined models of mechanical structures. In: Proc. 6-th Int. Conf. Math. Meth. Eng., Czechoslovakia, Vol. 2: 521-526, 1991.
  • [10] Y.G. Savula, I.I. Dyyak, A.V. Dubovik. Application of the combine model for the stress analyses of spatial structures. Prikladna Mechanika, 25(9): 62-66, 1985.
  • [11] Y.G. Savula, N.M. Pauk, I.I.Dyyak. Boundary-finite-element analyses of combined models of 2-D problems of elasticity. Proc. of National Academy of Sciences of Ukraine, N5, 49-52, 1995.
  • [12] E. Stein, S. Ohnimus. Concept and realization of integrated adaptive finite element methods in solid and structural-mechanics. In: Ch. Hirsch, ed., Num. Meth. in Eng. 92, 163-170, 1992.
  • [13] K.S. Surana. Transition finite elements for three dimensional stress analysis. Int. J. Numer. Methods Eng., 14: 475-497, 1979.
  • [14] B. Szabo, I. Babuska. Finite element analysis. 1991.
  • [15] S.P. Timoshenko. Course of the Theory of Elasticity [in Russian]. Naukova Dumka, Kyyiv, 1972.
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0129