PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape optimization method for nozzle design

Autorzy
Wybrane pełne teksty z tego czasopisma
Konferencja
International Conference on Numerical Mathematics and Computational Mechanics (7 ; July 1996 ; Miskolc ; Węgry)
Języki publikacji
EN
Abstrakty
EN
The optimization of the nozzle shape was carried out using the finite element incompressible viscous flow solver, with discretization of total derivative, with the originally developed software. Optimization procedure used conjugate gradient method, with finite difference approximation of gradient of objective function. The mesh generator, specially adapted for chosen shape parametrization in the form of splines using Bezier cubic curve segments, has been used in optimal shape design of the nozzle. The examples of optimization with constraints, the nozzle shape optimization, and the unconstrained optimization of the confusor are presented. All test cases showed good convergence properties that qualifies the proposed methodology as appropriate for shape optimization in viscous flow problems.
Słowa kluczowe
Rocznik
Strony
45--54
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Technical faculty, University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia
autor
  • Technical faculty, University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia
Bibliografia
  • [1] G. Bugeda, E. Oñate, D. Joannas. Mesh adaptivity in shape optimization, application to incompressible potential flow. In: K. Morgan et al., eds., Proceedings of VIII International Conference on Finite Elements in Fluids - New trends and applications. J. Wiley, Barcelona, 1993.
  • [2] A. Dervieux. Some recent advances in optimal shape design for aeronautical flows. In: S. Wagner et al., eds., Computational Fluid Dynamics '94, 251-258. J. Wiley, Chichester, 1994.
  • [3] DIN 1952, Durchflussmessung mit Blenden, Duesen, und Venturirohren in voll durchstroemten Rohren mit Kretsquerschnitt. Beuth Verlag GmbH, Berlin, 1982.
  • [4] T. Fol, P. Colin, D. Destarac. Application of Numerical Optimization Methods to 3D Aerodynamic Design. In: S. Wagner et al., eds., Computational Fluid Dynamics '94, 259-267. J. Wiley, Chichester, 1994.
  • [5] L.D. Landau, E.M. Lifshic. Teoretićeskaja fizika, tom VI, Gidrodinamika. Nauka, Moskva 1988.
  • [6] Z. Mrśa. Optimal design of spiral casing tongue and wicket gate angle by decomposition method. Int. J. Num. Meth. Fluids, 17: 995-1002, 1993.
  • [7] Z. Mrša, Finite element modeling of laminar flow of incompressible viscous fluid with discretization of directional derivative. In: Proceedings of the 1st Congress of Croatian Society for mechanics, Pula, Croatia, 430-438, 1994.
  • [8] Z. Mrša, G. Medić. Optimal nozzle design using finite element conjugate gradient baśed software. In: Proceedings of HYDROSOFT '96 (to appear).
  • [9] Z. Mrša, L. Sopta. Optimal shape design of Francis turbine spiral casing. In: K. Morgan et al., eds., Proceedings of VIII International Conference on Finite Elements in Fluids - New trends and applications, 1281-1289. J. Wiley, Barcelona, 1993.
  • [10] O. Pironneau. Optimal shape design for elliptic systems. Springer-Verlag, New York, 1984.
  • [11] O. Pironneau. Finite element methods in fiuids. Masson, Paris, 1989.
  • [12] L. Sopta, Z. Mrša. Towards Complete Shape Optimization of Francis Turbine Spiral Casing. In: 5. Wagner et al., eds., Computational Fluid Dynamics 94, 1025-1029. J. Wiley, Chichester, 1994.
  • [13] C. Taylor, T.G. Hughes. Finite element programming in fluids. Pineridge Press Ltd., Swansea, 1981.
  • [14] K. Weeber, S.R. Hoole. A structural mapping technique for geometric parametrization in the optimization of magnetic devices. Int. J. Num. Meth. Engng., 33: 2145-2179, 1992.
  • [15] F. Yamaguchi, Curves and surfaces in computer aided geometric design. Springer-Verlag, Berlin, 1988.
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0127