Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper concerns shape functions formulations in the scope of the recent methods generalizing finite elements and whose common feature is the absence of a mesh. These methods may also be interpreted as a genarelization of the finite difference approach for irregular grids. The shape functions obtained by the Moving Least Squares an by the GFDM (Generalized Finite Difference Method) approach exhibit a number of interesting properties, the most interesting being a local character of the approximation, high degree of continuity and the satisfaction of consistencu contraints neccesary for exact reproduction of polynomials. In the present work we formulate the shape functions directly as solution of the minimization of a weighted quadratic form subjected to the consistency contraints explicity introduced by Lagrange multipliers. This approach gives similar results as the standard moving least squares algorithm applied to the Taylor series expansion where the consistency is automatically satisfied but is more general in the sense, that an explicit specification of wished properties permits an introduction of additional arbitrary conraints other than consistency. It also leads to faster and more robust algorithms by avoiding matrix inversion. On the other hand, the consistency based formulations naturally lead to diffuse (or incomplete) derivatives of the shape functions. They are obtained at a significantly lower cost than full derivatives and their convergence to extact derivatives is demonstrated.
Rocznik
Tom
Strony
479--501
Opis fizyczny
Bibliogr. 19 poz. rys., tab., wykr.
Twórcy
autor
- Codiciel, UPS 856 CNRS, Mont-Sain-Aignan, France
autor
- INSA de Rouen, Rouen, France
autor
- Université de Technologie de Compiégne, Laboratoire LG2MS Compiégne, France
Bibliografia
- [1] T. Belytschko, L. Gu, Y.Y. Lu. Element-free Galerkin methods. Int. Journ. Num. Meth. Engrg., 37: 229-256, 1994.
- [2] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl. Meshless Methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139, 1996.
- [3] Breitkopf P., Touzot G., Villon P. Explicit form and efficient computation of MLS shape functions and their derivatives, submitted to IJNME.
- [4] C.A. Duarte, J.T. Oden. H-p clouds: an h-p meshless method. Num. Meth. Partial Diff. Equa., 12: 673-706, 1996.
- [5] C.A. Duarte, J.T. Oden. An h-p adaptive method using clouds. Comput. Meth. Applied Mech. Engrg. 139: 237-262, 1996.
- [6] J. Krok, J. Orkisz. A unified Approach to the FE and Generalized Variational FD in Nonlinear Mechanics, Concepts and Numerical Approach. Int. Symp. on Discretization Methods in Structural Mechanics IUTAM/ IACM, Vienna, Austria, 1989, Springer-Verlag, Berlin-Heidelberg, 353-362, 1990.
- [7] P. Lancaster, K. Salkauskas. Surfaces generated by moving least squares methods. Math Comput. 37: 155, 1981.
- [8] T. Liszka, J. Orkisz. Finite Difference Method of Arbitrary Irregular Meshes in Non-Linear Problems of Applied Mechanics. 4th Int. Conf. on Structural Mechanics in Reactor Technology, San Francisco, California, 1977.
- [9] T. Liszka, J. Orkisz. Finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 1980.
- [10] T. Liszka. An interpolation method for an irregular net nodes. IJNME, 20: 1599-1612, 1984.
- [11] Yu Xie Mukherjee and S. Mukherjee. The boundary node method for potential problems. Int. Journ. Num. Meth. Engrg. 40: 797-815, 1997.
- [12] B. Nayroles, G. Touzot, P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech., 10, 1992.
- [13] E. Onate, S. Idelsohn, O.C. Zienkiewicz, L. Taylor, C. Sacco. A stabilized finite point method for analysis of fluid mechanics problems. Comput. Meth. Applied Mech. Engrg., 139: 315-346, 1996.
- [14] J. Orkisz. Meshless finite difference method. I basic approach. Proc. of the LACM-Fourth World Congress on Computational Mechanics, Buenos Aires, 1998.
- [15] J. Orkisz. Meshless finite difference method. II Adaptative approach. Proc. of the IACM-Fourth World Congress on Computational Mechanics, Buenos Aires, 1998.
- [16] M. Syczewski, R. Tribillo. Singularities of sets used in the mesh method. Computer and Structures, 14(5-6): 509-511, 1981.
- [17] S.P. Timoshenko, J.N. Goodier. Theory of elasticity. 3° edition, McGraw-Hill, New York, 1987.
- [18] P. Villon. Contribution 4 l’Optimisation UTC, 1991. [19] M.J. Wyatt, G. Davies, C. Snell. Truction error control in generalized finite element method. J. Engng Mech. Div., Proc. ASCE, EM4, 736-741, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0001-0114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.