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THEORETICAL CONCEPTS
OF THE FOURIER BOUNDARY ELEMENT METHOD
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Abstract. The traditional Boundary Element Method (BEM) [4] is a collection of numerical techniques for solving some partial differential equations. The
classical BEM produces fully populated coefficients matrix. With Galerkin Boundary Element Method (GBEM) is possible to produce the symmetric coeffi-
cients matrix [5]. The Fourier BEM is a more general numerical approach and allows to avoid problems with singular integrals [1,3]. The article presents
the main aspects of Fourier BEM equations and the comparison of GBEM and Fourier BEM formulation.
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Teoretyczne podstawy metody elementéw brzegowych Fouriera
Streszczenie. Tradycyjna metoda elementéw brzegowych(MEB) [4] prowadzi w efekcie do rozwigzania uktadu réwnan liniowych z petng macierzq wspot-

czynnikow. Stosujgc podejscie Galerkina ostateczny uktad rownan liniowych jest reprezentowany macierzq symetryczng [5]. W podejsciu Fouriera, wspot-
czynniki uktadu rownan wyznaczane sq w przestrzeni Fouriera co pozwala unikngc problemow z catkowaniem catek nieosobliwych [1,3]. W artykule zapre-

zentowano podstawowe zatozenia MEB Fouriera oraz porownanie z MEB Galerkina.

Slowa kluczowe: metoda elementow brzegowych Galerkina i Fouriera, catkowanie numeryczne

Introduction

Basic integral equation (BIE) for the Boundary Element Method
(BEM) is constructed by the convolution with the fundamental
solution [1,3]. Figure 1 presents domain Q c R" with Dirichlet
and Neuman boundary.

I

Fig.1. The domain 02
Rys.1.Dziedzina 2

The basic principles of traditional BEM are presented for the
paradigmatic example of the n-dimensional stationary heat con-
duction described by:

Au(x)=-f(x),xeQcR" A=) 0" /ox;
k=1

xel,LcQ, (1)
xel,LcQ.

u(x) =up(x),
1(x) =t (x),
where:
A - Laplace operator,
u — the unknown quantity,
f - the known volume sources in (2.

The flux on the boundary is:
t=Au=—-0vu=-v-Vu,
where:

V, v - the gradient and the outer unit normal,
A, =-v-V - the boundary operator,
0/0x, - the partial derivatives denotes 0, ,

X — n-dimensional vector,
dX — the short form for dx;dx; (or dx;dx,dx;).

To obtain a well posed problem, half of the boundary data (ei-
ther  on 7, or ¢ on 7;) should be defined by boundary conditions,
ie. T, Ul =0Q.

1. The Galerkin Boundary Element Method

Most of the numerical methods are based on a weak form of
the differential equation [4]. Basic integral equation for the BEM
is constructed by the convolution with the fundamental solution
U(x).The fundamental solutions inherit their singular character
from the Dirac distribution. Unfortunately analytic formulas for
the fundamental solution can only be found for simple differential
operators. Nevertheless, as long as the coefficients of the differen-
tial operator are constant, the existence of the fundamental solu-
tion can always be assured [1].

The known and unknown boundary quantities u, ¢ are approximat-

ed by a sum of polynomial trial functions ¢.,4 with the coeffi-

u’

cients u',t":

u(x) > 3 ' (),
@)
()= D06,

For convergence reasons, the trial functions for the « should
be at least linear, for the ¢ it is sufficient to take constant trial
functions.

Galerkin BIE lead to the algebraic system of BIEs [1, 5]:

2K =F]+Y Ht =3 Gl 3)
2K =F 4y HIC -3 Gl “4)

where the vectors and matrices are defined as follows:
Fl =4/ 0| fOUx=y)dQ, T, ,
T, Q

HI'=[4/(x)[4/(»U(x=y)dl,dr,

G/ = {4/ ()[4, (AU (x-y)dl,dT,

T, r,

K= [ 4/ (x)x(x)g, (x)dT,

F/ = [/ 0)] f(0)A/U(x=y)dQ,dr, |

T,

x

H! = []()[ ¢ () AU (e~ )T, dT,

T, r,

G/ = [ 4] (0] 4 (»)A] 41U (x~ y)ardr, ,

x

K/ = [ 9! ()(0cg] + 4.4/ k)T,
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and xis defined in [1].
The Galerkin BIE lead to the final matrix system:
Z A7 x? =y’ , where the matrix A is fully populated and

symmetric [1, 5].
The traditional Galerkin BIE are reformulated to Fourier BIE
by means of the convolution and Parserval theorem [1, 6].

2. The distribution theory

Distributions are objects which generalize functions. They ex-
tend the concept of derivative to all locally integral functions and
are used to formulate generalized solutions of partial differential
equations. They are important in physics and engineering where
many non-continuous problems naturally lead to differential equa-
tions whose solutions or initial conditions are distributions, such
as the Dirac delta distribution [6].

The basic idea is to identify functions with abstract linear
functionals on a space of well-behaved test functions. Operators
on distributions can be understood by moving them to the test
function.

For example, let:

u:R— R,
be a locally integrable, and let :

¢R—R,
be a smooth (infinitely differentiable) function with compact
support (i.e., identically zero outside of some bounded set). The
function ¢ is the test function and:

u(p) = (u,4) = j uddx < o . 5)
R

This is a real number which depends on ¢. The function u is
then a continuous linear functional on the space which consists of
all the test functions ¢. The set of generalized functions u include
all linear and continuous functionals. They are defined by some
test functions ¢. Properties of the test functions define the set of
generalized functions.

The test functions:

$(x) e D) =C(Q),
are bounded, posses a compact support and are infinitely continu-
ously differentiable. They and all their derivatives vanish at the

boundary.
Distribution:
ueD'(Q)
is defined by the scalar product with the test function ¢ :
u(p) = (u,4) = J.M(X)de<oo. (6)

)t
The differentiation of generalized functions is defined as:
(0,u,8)=~(u,0,4).4<C; . (7
Because of the definition of the test function ¢, distributions
are infinitely differentiable. Jumps and singularities can be differ-
entiated [1].
The differentiation of the product of two distribution u;, u; is
defined as:
0, (uuy) =u,0,u, +u,0,u,. ®)
The convolution of distributions:
w *uy = [u,(x =y, (V)dy,x,y € R" ©)
e

is defined if only u, or u, has compact support.
For special distributions u, and u,,u, is [1]:
commutation: u, *u, =u, *u,,
association: (u, *u,) *u, =u, * (u, *u,) .
The differentiation of a convolution product is:
0% (u, *u,) = (0"u)) *u, =u, *(0”u,) . (10)
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By using a larger space of test functions, it is possible to de-
fine the tempered distributions, useful for the Fourier transform in
generality. All tempered distributions have a Fourier transform,
but not all distributions have one [1].

For tempered distributions u € S', the Fourier transform u is
defined by the transform of the test function ¢:

i(p) =u(h),peS. (11)

The invariance of the scalar product concerning the Fourier
transform is called Parseval's identity:

1 ~ o~
<”1,”2>:W<”1’”2>’ (12)
Jul(X)Z(X)dy - (271[)” Rjﬂﬁl(&)Z@)df.

It is possible to define the Fourier transform of tempered dis-
tributions. These include all the integrable functions, as well as
well-behaved functions of polynomial growth and distributions of
compact support, and have the added advantage that the Fourier
transform of any tempered distribution is again a tempered distri-
bution.

If the support of distribution u is contained in the convex and

compact domain Qc R" with a cutoff distribution y (eq. 27),

then the transform of u has no local singularities. Consequently
every distribution with compact support has a Fourier transform

which is an entire analytic function in C" [1].
The special distributions

The n-dimensional Dirac distribution:

() =11, 6(x) (13)
is defined by:

[5(x)dx=1,xeR";

M

5(x)=0 forall|x|=0.

J(x) is concentrated on a single point x=0 with infinite density:
0(0) > ©

but finite measure:
[sac=1.

The Dirac distribution is the identity object concerning convo-
lution:
u=uxs = [u(y)d(x=y)dy,x,yeR", (14)
he

and its Fourier transform is:
S(x)«L—>1,xeR". (15)

The Fourier transform of the translated Dirac-distribution is de-
fined for complex y e C":

—i<y, k>

o(x—y)«Ltoe ,x,yeC” (16)

All differentiations can be expressed by a convolution
with§* =05 :
u*(0°9)= ju(y)6”5(x —y)dy =0"u(x),x,yeR". (17)
M
The product with another distribution u can be simplified by the
relation:

£ k I Al k-1
M(X)afé(x—y)=2[k_lJ(—l) Qu(y)d"8(x~y). (18)
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If the boundary 0Q is described by w(x) =0 with the function
w € C” then the integration of a distribution u along this boundary

can be described by the scalar product:

(8)u) = [ux)dx. (19)

=0

The gradient Vi of the hypersurface w =0 is Vi =0 for

w =0 and the outer unit normal of this hypersurface is:

Vy
=——1_ 20
v |V'//| (20
and:
Vo) =3 W)\Vy . @1

Distributions can be represented by series useful for practical
computations. For the Dirac distribution, there are many ways to

construct a sequence of functions or regular distributions
&, (x),k =1,2,..., which converges to Dirac distribution.

One dimensional examples for these sequences are [1]:

2 4= SL{Z e ] ||;‘||><g€
b h-E

O =

d) ¢k(x)=é“j%.

These sequences are useful for the multiplication of distributions
H(x)0(x)=06(x)/2 and the evaluation of the free terms in

Boundary Integral Equation (BIE).

The Heaviside distribution is obtained by the integration of the
Dirac distribution:
1 x>0

H(x) = Ja(y)dy={0 o

In the literature, there are several definitions for the value at x=0.
For the linear distribution it is determined by:

(H(x),8(x)) =« = %,x eR'. (23)

(22)

For the multidimensional Heaviside distribution, the cutoff distri-
bution for a domain Q € R" is defined:
1 xeQ
7(x) =1x(x) x € 0Q , (24)
0 xgQ=0uUd0Q
which can be expressed by:
2= Hy () 25)
with a function y € C*(R") .
The integration of a distribution u over the domain Q2 can be de-
scribed by:

(Hy),u)= [u(x)dx. (26)

w=0

The value x(x)on the boundary 0Q is uniquely defined [1]:

1
K(x) = 3 for smooth part of a boundary,

1
K(x) = 7 for a rectangular corner,

_ )
w(x) = 2

for a arbitrary angles 0.

The gradient of the cutoff distribution leads to a definition of

the normal vector of the boundary even for non-smooth 6Q.

The main advantage of the theory of distribution is that it re-
establishes differentiation as the simple procedure and all quanti-

ties are differentiable even if they exhibit singularities and jumps

[1].
3. Fourier BEM

To obtain the Fourier transform of the BIE, all quantities have
to be extended from (2 to R,. It can be done by defining a cutoff
distribution y. All quantities are multiplied by x and finally
transformed into Fourier space. Mathematically this extension and
transformation is justified only in the frame of the theory of distri-
butions [1, 6].

The unknown quantity u extends only over (2 and may jumps
across the boundary 0Q . In the theory of distribution this is de-
scribed by a multiplication of u € C*(R") with the cutoff distribu-
tion y:

1 xeQ
u(x) > y(x)u(x), y(x) =< x(x) xeoQ . 27
0 xeQ=QuUQ
7 can be expresses for smooth boundaries by a generalized multi-
dimensional Heaviside distribution:
2@ =Hy (), (28)
where:
I K S(d 1 x>0
(X)—Jw ) y—{o <0’

and y € C” describes as the hypersurface of the boundary 0Q .

The main advantage of the distributional BIEs is that the inte-
grals extend formally over the entire R, and therefore the Fourier
transformation can be applied to these integral equation.

Distributional trial and test functions

For the definition of the trial functions it is needed to define a
cutoff distribution [1]:

e for a rectangle element:
7' ()= H(x)H(1-x)5(x,),xe R,
2°()=H(x)H(1-x)H(x,)H(1-x,)5(x,), xR,
e for a triangular element:

2" ()= H(x)H(x,)H(1-x, - x,)8(x,),
The trial functions are obtained by multiplying z°(x)and
p'(x)eC”(R"):

¢’ (x):= 1" (x)p"(x).

The trial functions ¢, (x) on arbitrary straight elements are ob-

xXeR’.

tained by translation and/or dilation operators:
T :¢0 - ¢1i,r = ¢0(x_b’)’
D4’ ¢, =¢"(ax),
with the translation vector b; and the dilation matrix a;.

Finally the unknown and the known quantities on the boundaries
are approximated by:

29



S(u(x) = Yo', (), SN p(x)- Vu(x) = 3 ') (x)

Distributional Galerkin BIE
The distributional Galerkin BIE for the temperature is [1]:

(9, )= (0, o) 3o o)

and for the flux:

(0 AL )=l

¢ xAl U> (30)

*A’U) Zt<u, *A[U>+
(31

+Z”:ui< /.6, % AlAU)
To simplify the notation the following notes were defined:
scalar product: (a,b) = [a(x)b(x)dx ,

R"

convolution: a*b= ja(y)b(x -y)dy,
e

u, =u(x)7(x),
S, =r0x(x).

Fourier BEM

The n-dimension Fourier transform:
Fu)=u,ueL (R"),i=v-1
is defined as:
u(x) = J.u(x)e"“ Pdy, < x, x> = Zx X, - (32)
M

The basic of Fourier BEM are two known theorems of the
Fourier transformation.

The theorem of Parseval states the invariance of energy or
work with respect to the dimensional Fourier transformation:

[pou(x)dx = j¢( DiR)ds, x,xeR"  (33)

(2)

The convolution theorem links the convolution in the original
space to a simple multiplication in the transformed space:

[pouGc-ndy > FREE) (34)

In the notation introduced earlier these two theorems may be
described as:

() =7 S (denam), (39)

p)*u(x) o JRAR) (36)
The inner integrals in BIE are convolutions so:

f,*U > [, U® (37

42U o ) UR) (38)

¢ rAU s Pi®) AUR) (39)

The Fourier transformation of the differential equation converts

the differential operator P(0) to an algebraic expression 13()2) :

Mu(x)==f(x) > - a®=-7), (40)

where:

pe

Z

The Fourier fundamental solution U is the response to a single
unit force:

f(x)=8(x)«L> f(x)=1. 41
It has to be solved:
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AU(x)=-8(x) <L -3 UE)=-1. (42)
which is achieved in the transformed space by the inversion of P:

U(%)= (43)
IXI
This procedure can be applied to all linear differential operators
with constants coefficients. The Fourier fundamental solution is
always known and often has simple structure [1].

Uis singular in the point |fc| =0 and hence not uniquely de-

termined in the original space.
The zeroes of the denominator correspond to additional homoge-
nous solutions of the differential equation:

Au(x)=0 < [ a(#)=0. (44)

For straight elements, the normal vector V' is locally independent
of x. Hence, the transform of the fundamental flux and of the
hyper singular term is:

AU =—v' VU £ AU == iU (45)

A/AIU=v’ - V(' -VU)

s AAU =y iz DU
BEM is based on Green's functions i.e. on special fundamental
solutions. The Fourier BEM method analysed by [1] is especially
of interest for cases where the fundamental solution is not known.
The transform of the cutoff distribution y, is:
e for reference element in R%:

2'(x)=H(x)H(1-x)5(x,)

o (= ) o
xl
e  forreference element in R’:
2" (x)=H(x)H(1- XI)H(XZ)H(I x,)0(x3)
(47)

PAe)) =—(e VA B

X,

Elements of the arbitrary polynomial degree are constructed via
multiplication by py(x) in the original space or an analytical con-
volution in the transformed space:

¢’ (x)=2"(0)p"(x)

F &0(2): ;20(2_)*130(2_)

1
(27)"
Table 1. shows the trial functions for some two-dimensional line
elements [1].

Table 1. Trial functions in R®
Tabela 1. funkcje testowe w R’

Constant . n ~
¢o _ ZO F ¢o _ ZO
pner ¢#=(-x)p" > §'=0-i0)7"
¢2 = leO — ¢2 = 161;20
Parabolic

¢ =(2x2=3x, +1) " s §'=(-20°-3i0,+1)3°
F=(4x —4x) " L P =(-407—4id,)}"
P =2x-x)" T P =(-201-i0)}"

For straight elements and for arbitrary polynomial trial functions
Ppo(x), the transformed expressions are analytically known in R’
and R°[1].

The discretized Fourier BIE lead to an algebraic system iden-
tical to that obtained in the original space, where the matrices are
computed in the transformed space (eq. 3,4) but now, the matrices
are computed in the transformed space:

(0, TG, (48)

FM
(2 )

1l = (H D d @),
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L= G (FDADAD),
L= G (D).
F = o f 0. @A),
1! = G O A @A),
6 = (HDAOIA0G).
K = (B ).

4. Numerical example

The comparison of GBEM and Fourier BEM formulation is
presented for the boundary integral equations limited to constant
elements and 2D space. As the test example, the Dirichlet problem
of the Poisson equation is considered [2].

The Dirichlet problem for Poisson equation:

Au(x)=—-f(x),xeQ,

u(x)=u, =0,xel’,
is solved in a quadratic two-dimensional domain Q =[0,1]x[0,1]
at the boundaries #=0. The interior is subjected to stationary heat
source f. The boundary 0Q is divided into eight elements (fig.2.).

1 2 X4
Fig.2. Quadratic domain Qwith eight boundary elements and constant trial function
Fig.2. Kwadratowe domeny Qz osmiu elementow brzegowych oraz stala funkcja
probna

The fundamental solution and its transform for the Laplacian A are

[1]:
U:ZLlnw/xlz+xz2 N - !
7

YY)
X +xz

Taking into account that #=0 at the boundaries, the general system
of BIE can be reduced to:

0=(g/. 7, *U)+ Y0 (@4 +U)

i

0= <¢3/‘(—;2), j;t?) + NZt"(&,’(—i),%'U >

A uniform heat source f'is assumed over (2
f;{(x) = foH(x)H(1=x)H(x,)H(1-x,)

R —i;rl _ 71')22 _
=gt =D
XX,

For the R? elements the cuttoff distribution definition is(eq. 46):
2 =H(x)H(1-x)5(x,) , xeR?,
and it's Fourier transform is described by:

200 = H)H(L=%)305) ¢ 7' (D) = =)
xl

In our example, for constant elements (table 1), the trial function
and it's Fourier transform is:

¢0:ZO F ¢?0:}20.

The trial functions should be defined for eight constant elements
(with different coordinates). For every element, the coefficients
for Heaviside and Dirac distribution should be modified to receive
the value of the product: H(x,)H(1-x,)d(x,) to be equal to one

inside the element and zero outside.

From the definition, the Dirac distribution is equal to one only for
x=0, and Heaviside distribution is equal to one for x>0.
Additionally, the Fourier transform for dilation and translation
operators is described as (eq. 29):

P (x—b) <L F(R)e Y, #(ax) <L é;&“ (af) .

Taking all together, we have the constant trial and test function for
the flux ¢ [1]:

¢zl =H(x)H(1=2x,)d(x,) “—

) )
¢;,1—Al (eﬂ}l/z—l)l:i(e 1A -1 >
X, /2 2 X,

¢ =HQ2x,~DH(1-x)5(x,) «—

it ity /2
¢?2:l i eff.il,z(eff;-l/z_l):i(e 1'%y
t A
2

X

2x,/
¢ =H(x,)H(1-2x,)0(x, 1) «I—>
. —itn /2 —if,
I (4.;2/2_1 1 4.e1=.(e 27 el
T )Ee ' i,
¢ =HQ2x, -DH(1-x,)0(x, -1) <«

¢;4 :l i e*ifrz/Z(e—ﬁz/Z _1;7,&1
Y2x,/2

ik —ikn /2 —if
_l,(e 2 _e 2 el

X,
¢15 =H(x)H(1-2x)6(x, - 1) —
. —it /2 —i%
pR (e—iilxz _l)le=f;2 :i(e R
X2 2 X
#' =HQ2x, -DH(1-x,)6(x, - 1) <t

¢?(, :l i e—[il/z(e—iil/Z _1)24;-2
Y2%,/2

—i% —ity /2
1 _o™1

1

e )e 2

X

¢/ =H(x,)H(1-2x,)5(x,) «—

| ity /2
Al7 =— 1 (e—i%z/z —l)l:iu
X, /2 2 B
¢,8:H(2x2_1)H(1—X2)5(x1) F
¢;s _l i 67&2/2(@4’%2/2 _1)_1.(67“:2 _e—i£2/2)
CT2%,/2 %

In the original space the system of equations to solve is [2]:
> H/t'=-F/

u

where:
H = [¢/(0)[¢/(0)U(x=p)dr,dT,
T, r,

F) =[]0 f()U (x=)dQ,dT, .

The symbolic Matlab calculation of the matrix H coefficients are
exactly described in [2] and for example:



1/21/2

= I IU(xl —X,)dx,dx, =
0 0

1/21/2
:i}[ '0[ In N(xl _xz)zdxzdxl

The numerical calculation of singular integrals was widely dis-
cussed in [3], where the regularisation method was introduced.
The analogical equations system is to solve in Fourier space but
now coefficients are calculated according eq. 48:

H! = e (DA D0E)

F] = W@j (- x),f()(}(x)>

In our example we have:
8 ~ A A ~ . " A A .
YO ¢ ED40) =~ .7,0) 1.8

and:

n_ 1 Jle oy Bleangres
R AT

X [i(eb}]/z _1)]. [l'(ff&'/2 _1)]dx1dxz

Centy —iE (i -3

To calculate H;; value in Fourier space the following identities are
used:

o2 l)] [(efzx/l 1)] (zx/Z -2 _ Gixl2 _ eix/2 +1)

X .. x X .. x X .. x
cos—+isin—= |-| cos=—isin= |—| cos=+isin— |—
( jising | {cond sin |-[eon3 s
cos—isin= |+1=] cos* X —i?sin? = | -| 2cos X

2 2 2 2 2

+l1=1-|2cosZ |+1=2—|2cosX | = —2(cos = 1),
2 2 2

J. —1 1 — _1 Sgn(j}l)
< (2n)? (5‘12‘”2;) @2r) 2% (from [17]).
Finally:
[T [i(em/z_l)]'[i(eiiil/z_1)]dfc dx, =
2n)* - X% (—fcz _)%22) o
J_[(e&l/z ] [(e i /2 1)]-[ Bodh =
] X p@o (&3]
_—II_Z(cosﬁ—l)—dsgnEx' ) i, =
(2m) 272
1 opsenGy) o E o
(zfr)i FE
1 0
@ :‘;—(cos——l)dx +j (COS__I)dxl =
1
@ I (cos——l)abcl

The numerical value of the last integral calculated in Matlab is
equal: -0.0904.
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The relative error between H;; calculated symbolically in original
space and numerically in Fourier space is 3.65%.

5. Conclusion

To obtain the Fourier transform of the Galerkin BIE, all quan-
tities have to be extended from original Q) space to Rn. Mathemat-
ically this extension and transformation is justified only in the
frame of the theory of distributions.

Due to the equivalence of the terms in the original and the
transformed space which is state by Parseval theorem, all the
vectors and matrices have the same values as would be obtained
by a traditional BEM approach. The further algorithm of the BEM
can be taken without any modification.

The Fourier BEM method is more difficult than the standard
BEM method but is specially of interest for cases where the fun-
damental solution is not known. This aspect of the Fourier BEM
method requires further study.
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Komputerowej. Od roku 2011 na stanowisku starszego
wyktadowcy.

Obszar zainteresowan dydaktycznych i naukowych to
metody numeryczne i jgzyki programowania.

Prof. dr hab. inz. Jan Sikora
e-mail: sikS9@wp.pl

Ukonczyt Wydziat Elektryczny Politechniki Warszaw-
skiej. W ciggu 34 lat pracy zawodowej zdobyt
wszystkie stopnie, tytuly i stanowiska lacznie ze
stanowiskiem profesora zwyczajnego na swojej
macierzystej uczelni.

Z Instytutem Elektrotechniki w Warszawie jest
zwigzany od 1998 roku. Od roku 2008 pracuje na
Wydziale Elektrotechniki i Informatyki Politechniki
Lubelskiej w Katedrze Elektroniki. W latach 2001-
2004 pracowal jako Senior Research Fellow w
University College London w Grupie Tomografii
Optycznej Prof. S. Arridge’a.

Jego zainteresowania naukowe skupiaja si¢ wokot
numerycznych metod pola elektromagnetycznego.




