
ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ. INFORMATYKA

THE COMPARISON OF GENETIC ALGORITHMS
WHICH SOLVE ORIENTEERING PROBLEM USING

COMPLETE AND INCOMPLETE GRAPH

Krzysztof Ostrowski, Jolanta Koszelew

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: The purpose of this work was to compare two forms of genetic algorithm
(complete and incomplete graph version) which solves Orienteering Problem (OP). While in
most papers concerning OP graph is complete and satisfies triangle inequality, in our versions
such assumptions may not be satisfied. It could be more practical as transport networks
are graphs which do not have to satisfy those conditions. In such cases, graphs are usually
complemented with fictional edges before they can be used by classic OP solving algorithms
which operate on complete graphs. This paper answers the question: Is it better (in terms of
results quality and time consumption) to transform graphs to classic OP form before running
algorithm (complete graph version) or to solve OP on graphs without any assumptions and
changes (incomplete graph version)? The computer experiment was conducted on the real
transport network in Poland and its results suggest that it is worth checking both versions of
the algorithm on concrete networks.

Keywords: orienteering problem, OP, transport network, genetic algorithm, GA, incom-
plete graph, complete graph

1. Introduction

The orienteering problem (OP) is still one of the most challenging optimization
problems. It is related to the travelling salesman problem (TSP). The main difference
is that not all cities have to be visited and each of them has some profit. The goal
is to maximize total profit within a given time frame. The OP has a lot of practical
applications (i.e. logistics, planning and tourism [8] [12]). For example, it could be
very helpful in trip planning and such systems for tourists are developed [18][2].
Several exact solutions of the OP were proposed, including linear and dynamic
programming [7][6]. However, the OP (like TSP) is an NP-hard problem [4][3]

Zeszyty Naukowe Politechniki Bialostockiej. Informatyka, vol. 8, pp. 61-77, 2011.

61

Krzysztof Ostrowski, Jolanta Koszelew

and exact solutions are impractical in terms of time consumption for bigger sized
problems. Thus, algorithms with various heuristic strategies are implemented to solve
the problem more efficiently [17]. One of the first heuristics (including Monte Carlo
method) were applied by Tsiligirides [15]. Others proposed methods include i.e.
2-opt and 3-opt procedures and centre of gravity usage [10][4][5]. One of the most
effective heuristic solving the OP is a guided local search heuristic [16][11]. Artificial
neural networks and genetic algorithms were also used to solve the OP [19][13].
The OP itself has also several extensions and variants i.e. team orienteering problem
(TOP) and orienteering problem with time windows (OPTW) [1][14].

In the paper two versions of genetic algorithm (GA) with mutation are presented
to solve the OP. One of them (IG) operates on an incomplete graph and the other (CG)
performs edge completion before running the main genetic algorithm on a complete
graph. The paper is organised as follows. Section 2 presents the definition of the OP
with a network example. Section 3 gives a detailed specification of both GA versions
with several examples. In section 4 the experimental results of these two algorithms
(with a couple of different heuristics) were compared on a real transport network.
Conclusions are presented in section 5.

2. Problem definition

Given a set of n vertices (each vertex has some nonnegative profit), travel time
between every pair of vertices and the starting point (s) and the end point (e), the
purpose of the OP is to find the path (limited by travel time tmax) between vertices
s and e that maximizes the total profit (computed as the sum of profits of visited
vertices). Each point can be visited at most once.

The OP can be also defined using an undirected, complete graph G = (V,E),
when V (|V | = n) is the vertex set and E is the edge set. Each vertex i is associated
with some nonnegative profit pi and each edge connecting vertices i and j is
associated with some travel time ti j. The goal is to find a Hamiltonian path of a
subgraph of G (between start (s) and end (e) vertices) which maximizes the total
collected profit and is limited by constraint tmax.

The problem introduced in this article is OP with one substantial modification:
each vertex can be visited more than once during the travel, but the total profit is
increased only when a given vertex is visited for the first time. In addition, graph
edges do not have to satisfy triangle inequality. The paper presents two versions
of algorithms solving OP. Both of them are genetic algorithms (GA) with local
search procedure in the form of mutation. In the first algorithm version presented
in the article there are direct connections (travel times) only between some pairs of

62

The comparison of genetic algorithms which solve Orienteering Problem using ...

vertices (incomplete and undirected graph) and no edge completion is performed
before running the OP solving algorithm. In the second version it is assumed that
there is a direct connection (travel time) between every pair of points (complete and
undirected graph). If this assumption is not satisfied, a graph is complemented with
virtual edges using Dijkstra algorithm. There is an important note about the score
calculation: if a given path includes a virtual edge between vertices i and j then all
vertices on the shortest path from i to j are considered when computing the total
profit.

At the problem input there are graph G (with matrix of travel times t and vector
of profits p) and maximum travel time tmax. At the problem output route r in graph G
is obtained. It starts and ends in the vertex number 1, its travel time is not greater than
tmax and its total profit is maximized. In our experiment graph G is a real transport
network with cities (and profits) and connections between them.

Fig. 1. A graph representing an exemplary transport network

In the picture (fig. 1) there is an exemplary network of 8 cities. Travel time
(ti j) values are marked on edges and profit (pi) values are marked near vertices
(cities). This network is used in all examples from the paper. Let tmax = 80. A
cycle r=1, 5, 4, 7, 6, 7, 3, 2, 1 can be a solution. Its travel time is equal to 79
(14+8+6+7+7+12+12+15) and its total profit is 26 (5+3+2+5+4+4+3 - only first visits
to cities 1 and 6 are counted).

63

Krzysztof Ostrowski, Jolanta Koszelew

3. Algorithm specification

Both presented versions are genetic algorithms with mutation. Main steps in both
versions are the same but genetic operations are different in some important details.
Tours are encoded into a chromosome as a sequence of vertices (cities). It is the most
natural way of adopting GA for OP. For example, the cycle from previous section can
be represented as an individual (1, 5, 4, 7, 6, 7, 3, 2, 1) and its fitness is 26 (equal to
the total profit).

3.1 Incomplete graph version

This algorithm is an improved (in terms of time complexity) version of [9]. First, an
initial population of Psize solutions is generated. At the beginning a random vertex
v adjacent to vertex 1 (the start point) is chosen and t1v is added to the current
travel time. If the current travel time does not exceed 0.5 · tmax, the tour generation is
continued. Now we start at the vertex v and choose random vertex u adjacent to v. At
every step we exclude the visited vertex from the set of possibilities - it prevents from
visiting a given vertex repeatedly. If the current tour length is greater than 0.5 · tmax,
the last vertex is rejected and we return to vertex 1 the same way in reverse order.
This way of generating the individuals of the initial population means that they are
symmetrical in respect of the middle vertex in the tour. However, these symmetries
are removed by the algorithm. An example of an initial population is shown in table
1.

After generating initial population, the GA starts to improve the current
population through repetitive application of selection, crossover and mutation. The
algorithm stops after Ng generations and the resulting tour is the best individual from
the final generation. First, tournament selection is applied - we select tsize random,
different individuals from the current population and the best one from the group is
copied to the next population. The whole tournament group is returned to the old
population. After Psize repetitions of this step a new population is created (a selection
example in table 2).

The example presented in tab. 2 shows how selection improves average popula-
tion fitness. However, if tsize is too high (relatively to Psize), the population converges
very fast.

The crossover is performed as follows: first, two random parental individuals
are selected. Afterwards we randomly choose a common gene (crossing point) in
both parents (first and last genes are not considered). If there are no common genes,
crossover cannot be done and no changes in chosen chromosomes are applied.

64

The comparison of genetic algorithms which solve Orienteering Problem using ...

Table 1. An initial population example (Psize = 5, tmax = 80)

No Individual Fitness Travel time
1 (1, 2, 3, 7, 3, 2, 1) 17 74
2 (1, 5, 6, 7, 6, 5, 1) 17 66
3 (1, 4, 7, 6, 7, 4, 1) 16 66
4 (1, 5, 7, 5, 1) 13 62
5 (1, 5, 4, 7, 6, 7, 4, 5, 1) 19 77

Table 2. An example of a tournament selection performed on the population from table 1

No Numbers of individuals selected
into the tournament group

Number of the
best individual

The best individual (next
population member)

Fitness of the
best individual

1 1, 3, 4 1 (1, 2, 3, 7, 3, 2, 1) 17
2 2, 4, 5 5 (1, 5, 4, 7, 6, 7, 4, 5, 1) 19
3 2, 3, 4 2 (1, 5, 6, 7, 6, 5, 1) 17
4 1, 2, 5 5 (1, 5, 4, 7, 6, 7, 4, 5, 1) 19
5 1, 2, 3 1 (1, 2, 3, 7, 3, 2, 1) 17

After that, two new individuals are created as a result of exchanging chromosome
fragments (from the crossing point to the end of the chromosome) in both parents. If
one of the children does not preserve tmax constraint, it is replaced by the fitter parent
in the new population. If both children do not preserve this constraint, the parents
replace them in the new population (no changes applied).

Fig. 2. An example of crossover (tmax = 80), crossing point in bold

65

Krzysztof Ostrowski, Jolanta Koszelew

In the example presented in fig. 2 two children with improved fitness and low
enough travel time are created. Both parents are symmetrical but the symmetry in
the offspring individuals is removed by crossover. After selection and crossover the
population undergo mutation. First we select a random individual to be mutated.
There are two possible kinds of mutation: inserting a new gene and removing
an existing gene. Several mutation versions (with different heuristics) have been
implemented in the presented algorithm. In some of them only inserting mutation can
be performed, but in others both kinds of mutation are possible with the probability
of 0.5. During the inserting mutation all the possibilities of inserting a new gene that
is not present in the chromosome are considered (without exceeding tmax) and the
best is chosen. Depending on the heuristic used it can be the one with lowest travel
time increase, highest fitness gain or best f itness/travelTime ratio.

Fig. 3. An example of mutation (tmax = 80, highest fitness gain heuristic), inserted gene in bold

In the example presented in fig. 3 there are two possibilities of inserting a new
gene into chromosome (1, 2, 3, 4, 1) without exceeding tmax. One of them is inserting
gene 7 between genes 3 and 4 (fitness gain is 5) and the other is inserting gene 5
between genes 4 and 1 (fitness gain is equal to 3). The first of them (with higher fitness
gain) is chosen. There are also several variants of removing mutation. In all of them
we consider only genes which can be removed without perturbing path continuity -
between their neighbouring genes in the chromosome there should be an edge in the
graph. After obtaining the set of possibilities, an appropriate heuristic is performed.
In the first heuristic only genes that appear in the chromosome more than once are
considered (except first and last genes). If there are no such candidates, the removing
mutation is not performed. Otherwise we choose the gene in order to shorten the
travel time as much as possible. In the second heuristic we concentrate on the lowest
fitness loss. In the best-case scenario the fitness loss is zero (we remove a gene that

66

The comparison of genetic algorithms which solve Orienteering Problem using ...

has duplicates in the chromosome), but it is possible that fitness loss is greater than
zero (no duplicates in the chromosome).

Fig. 4. An example of mutation (tmax = 80, highest fitness gain heuristic), removed gene in bold

In the example presented in fig. 4 we have three candidates to remove: gene 5
(between genes 1 and 4), gene 4 (between genes 5 and 7) and gene 4 (between genes 5
and 1). These genes meet two conditions: they have duplicates and their chromosome
neighbours are connected in the graph. If we remove gene 5, the path is shorten by
2 (14+8-20), but if we remove gene 4 (between genes 5 and 7) travel time is even
greater. Thus, the best candidate is gene 4 (between genes 5 and 1) - we shorten
travel time by 14 (20+8-14).

3.2 Complete graph version

In the second algorithm version there are some necessary steps to do before
performing the GA. The graph is complemented with virtual edges. First, Dijkstra
algorithm is run from every vertex (altogether n times). If there is no edge between
vertices i and j we add virtual edge (i, j) computed during the Dijkstra algorithm.
It contains more information than a real edge - besides the travel time, vertices
on the shortest path between i and j are also remembered. Virtual edge (j, i) is
constructed independently during a different run of Dijkstra algorithm. Its travel
time in undirected graphs is the same as in edge (i, j), but the path itself could be
totally different (a lot of different shortest paths possible). This partially reduces the
chromosome symmetry obtained during generating the initial population - although
the chromosome is still symmetrical, its inner paths (virtual edges) could differ
significantly. In our exemplary graph (presented in fig. 1) both virtual edges between
vertices 1 and 8 have travel time of 41, but the associated shortest paths are different
(1-4-7-8 and 8-3-2-1).

67

Krzysztof Ostrowski, Jolanta Koszelew

As a result of the edge completion described above, calculating the individual
fitness is different from the one applied the first algorithm version. While encoding
tour vertices into a chromosome is the same, vertices "hidden" in virtual edges
(shortest paths) are also considered when calculating fitness. It means that profits
of all vertices (hidden or not) are summed up only during the first visit of a given
vertex. In this section term ’main path’ means the sequence of chromosome genes
(vertices) whereas term ’full path’ refers to the sequence of all vertices in the route
(including those hidden in virtual edges).

Fig. 5. An example of a chromosome. Virtual edges (shortest paths) in bold and hidden vertices above

In the example presented in fig. 5 there is a chromosome representing tour
8-1-5-8 (main path) which actually is 8-(7-4)-1-5-(4-7)-8 (full path). The shortest
path from vertex 8 to vertex 1 is 8-7-4-1 and the shortest path from vertex 5 to vertex
8 is 5-4-7-8 - these are virtual edges. The edge from vertex 1 to vertex 5 is real. To
calculate overall profit (fitness) we take into account vertices 8, 7, 4, 1, and 5 - the
fitness is 16. The total travel time is 84 - the sum of 41 (shortest path from vertex 8
to vertex 1), 14 and 29 (shortest path from vertex 5 to vertex 8).

The first step of the GA is to generate an initial population. It is similar to the
procedure performed in the incomplete graph version. The main difference is that the
graph is full and from a given vertex we can construct the path to any other (except
those already included in the main path). In the process of creating individuals both
real and virtual paths could be added.

After generating the initial population, the GA starts its standard procedure of
repeated selection, crossover and mutation. The tournament selection and crossover
are performed in the same way as in the incomplete graph version of the algorithm.
During the crossover only vertices from the main path are considered when selecting
crossing point (virtual and real edges treated in the same way).

Mutation is the only step which is strongly different in both versions of the GA.
We select a random individual and then inserting or removing mutation is performed,
both with the probability of 0.5 (in some variants inserting mutation is the only

68

The comparison of genetic algorithms which solve Orienteering Problem using ...

option). During inserting mutation all the possibilities are checked - between every
pair of neigbouring genes in the chromosome (main path) we can insert any gene
different than these two (the graph is full and gene duplicates in the chromosome
are allowed) and tmax is the only limit. From this set of possibilities the best one
is chosen - it depends on the heuristic used. The first heuristic selects insertion
which results in the greatest fitness gain. The second one is based on finding the
greatest f itness/travelTime ratio in the newly mutated individual. Normally during
inserting mutation one edge is removed and two edges are added. In this version of
the algorithm any edge could be a path (virtual edge). Thus, the algorithm operates
on whole paths and heuristics are more complex - when calculating fitness and travel
time, every hidden vertex in virtual edges has to be considered.

Fig. 6. An example of mutation (tmax=80, max f itness/travelTime heuristic), inserted gene in bold

In the example presented in fig. 6 we have chromosome (1, 6, 7, 1). Edges 1-6
and 7-1 are virtual and the full path is 1-(5)-6-7-(4)-1. There are a few possibilities
of inserting a new gene without exceeding tmax. The best is presented in the example
- inserting gene 2 between genes 7 and 1 results in maximum f itness/travelTime
ratio of 0.344 (fitness 22, travel time 64). One of other options is inserting gene 3
between genes 7 and 1. The mutated chromosome would be (1, 6, 7, 3, 1) with the
full path 1-(5)-6-7-3-(2)-1. Its fitness would be 24, which is better than in the chosen
possibility, however with travel time of 70 its f itness/travelTime ratio is slightly
worse (0,343).

Removing mutation also checks all possibilities - any gene (except first and
last) could be removed. There are several heuristics presented - two of them are
the same as those in the inserting mutation (greatest fitness loss (could be less
than 0) and greatest f itness/travelTime ratio in a mutated individual). The third

69

Krzysztof Ostrowski, Jolanta Koszelew

heuristic chooses the option with the greatest f itness2/travelTime ratio. Evaluating
new fitness and travel time is performed in a similar way to the inserting mutation
- if some removed or inserted edge is virtual, the algorithm takes into account all
vertices in the shortest path. Thus, calculation is more complex but it is compensated
by shorter chromosomes than those in the first algorithm version (less genes in the
main path).

Fig. 7. An example of mutation (tmax = 100, max f itness2/travelTime heuristic), removed gene in bold

In the chromosome presented in fig. 7 there are three potential candidates to
remove - genes 5, 8 and 2. If gene 5 is extracted (shown in the example) fitness (20)
is unchanged and travel time is shorter (82) - the resulted f itness2/travelTime is
4.88, which is the best of all possibilities. During this operation we remove edge 1-5
and virtual edge 5-(6)-8. Instead, shortest path 1-(4-7)-8 from vertex 1 to vertex 8 is
added. The second option is eliminating gene 8 and obtaining the chromosome (1,
5, 2, 1) - the real path would be much shorter: 1-5-(4)-2-1 (travel time 47, fitness
13, f itness2/travelTime3,60). The third option (removing gene 2) results in the
chromosome (1, 5, 8, 1) (real path 1-5-(6)-8-(7-4)-1). With fitness (20) and travel
time (86) unchanged, its f itness2/travelTime ratio would be 4.65.

4. Experimental results

Experiments were conducted on the real road network of 306 cities in Poland. The
tested data of the network can be found on the website [20] in two text files: cities.txt
and distances.txt. The network file (distances.txt) was created from a real map - it
includes main segments of roads from the whole Poland. The capital of Poland,
Warsaw, was established as the central depot (vertex 1). Profits associated with a

70

The comparison of genetic algorithms which solve Orienteering Problem using ...

given city (written in the file cities.txt) were determined according to the number of
inhabitants in the city. The more inhabitants the higher profit associated with a given
city but its maximum value is 5. The profit was calculated as follows:

pro f it =
inhabitants

10000
(1)

Both versions of the algorithm (for complete and incomplete graph) with several
different heuristic variants were tested on the network presented above and its results
were compared. The chosen heuristics were among the best of all heuristics tested on
the transport network used in our experiment. Algorithm parameters were the same in
almost all runs (Psize = 300, tsize = 3, Ng = 100). Only number of generations (Ng) is
increased to 150 in the last two presented comparisons for IG. Increasing Psize brings
minor changes in both versions and increasing tmax in IG has similar but generally less
pronounced effects than changing Ng. CG converges more quickly and in this case
increasing algorithm parameters results in marginal differences. Experiments were
conducted on six tmax values: 500, 1000, 1500, 2000, 2500, 3000. The result of a given
algorithm run is the best chromosome (highest fitness) from the final population.
Statistics were obtained from 30 runs of each algorithm variant. Analysed parameters
were: average result (mean), 95% confidence interval (CI) for mean and the best result
(max) from 30 algorithm runs.

First, algorithms without removing mutation were compared. Two different
inserting heuristics (highest fitness gain, highest f itness/travelTime ratio after
mutation) were chosen.

Table 3. Results compared (inserting mutation: highest fitness gain, no removing mutation)

Complete graph version (CG) Incomplete graph version (IG)
tmax Mean CI for mean Max Mean CI for mean Max
500 59.6 ±2.3 79 44.2 ±3.2 65
1000 102.3 ±3.6 118 86.7 ±5.7 142
1500 127.1 ±5.3 160 140.3 ±10.3 193
2000 161.3 ±6.5 215 188.6 ±8.4 227
2500 179.2 ±8.8 227 221.4 ±8.1 264
3000 200.1 ±6.6 244 241.9 ±9.8 285

When using highest fitness gain heuristic (tab. 3), CG performs better for the
lowest tmax values. However, IG is significantly better for higher tmax (>1000) in terms
of both average and best results.

71

Krzysztof Ostrowski, Jolanta Koszelew

Table 4. Results compared (inserting: highest f itness/travelTime after mutation, no removing muta-
tion)

CG IG
tmax Mean CI for mean Max Mean Ci for mean Max
500 61.8 ±3.4 79 46.9 ±2.9 63
1000 112.6 ±5.0 149 99.6 ±7.6 157
1500 140.7 ±7.9 209 160.9 ±11.6 206
2000 169.9 ±8.1 209 202.8 ±8.3 237
2500 193.3 ±9.5 253 228.3 ±10.2 267
3000 220.5 ±10.7 295 254.7 ±7.4 287

Results of both algorithms improve when using heuristic of highest
f itness/travelTime ratio after mutation. The tendency is the same as in the previous
heuristic - while CG is on average better for lower tmax, IG excels for higher tmax.
However, the best results (max) from 30 runs are more similar than in the previous
heuristic, with CG better even for some higher tmax values (i.e. 3000).

After first comparisons removing mutation was added to both versions
of GA. Lowest fitness loss heuristic (when removing) combined with highest
f itness/travelTime ratio after mutation (when inserting) was the best combination
for complete graph version of GA and one of the best variants (in terms of mean
results) for incomplete graph algorithm version.

Table 5. Results compared (inserting: highest f itness/travelTime after mutation, removing: lowest
fitness loss)

CG IG
tmax Mean CI for mean Max Mean Ci for mean Max
500 61.9 ±3.5 92 52.3 ±3.2 71
1000 109.5 ±5.4 144 92.7 ±6.2 123
1500 146.7 ±8.8 204 151.5 ±9.7 192
2000 190.6 ±9.7 248 198.2 ±8.0 241
2500 219.1 ±10.7 281 228.6 ±6.9 264
3000 256.9 ±11.4 320 244.7 ±8.8 279

It can be seen that removing mutation significantly improved results of CG
for higher tmax values. At the same time performance of IG slightly dropped. As a
result, CG is still better for lower tmax values but its mean values are also closer for
higher tmax. What is more, for longest routes (tmax 2500-3000) CG achieves highest
maximum values.

72

The comparison of genetic algorithms which solve Orienteering Problem using ...

There is one more combination of heuristics regarding incomplete graph
algorithm version which should be mentioned. When inserting a gene we choose
the option with highest f itnessGain2/travelTimeIncrease ratio. When removing we
consider only genes which have some duplicate in the chromosome. If any of them
are found, we choose the option with highest travel time loss. In terms of mean results
this combination is similar to the version from the previous table but it is better for
tmax = 1000. More importantly, it is one of algorithm variants which improves further
for higher number of GA generations (Ng=150). It is shown in the tab. 6.

Table 6. Comparison 1 between results for Ng=100 and Ng=150 - incomplete graph version (inserting:
highest f itnessGain2/travelTimeIncrease ratio, removing: highest travel time loss)

Ng = 100 Ng = 150
tmax Mean CI for mean Max Mean Ci for mean Max
500 52.4 ±3.0 69 54.3 ±3.0 69
1000 101.4 ±7.1 149 105.6 ±6.9 157
1500 162.3 ±7.4 194 178.8 ±9.1 215
2000 195.3 ±7.4 230 213.5 ±9.1 269
2500 225.4 ±7.9 263 243.6 ±9.5 288
3000 241.8 ±7.1 270 261.6 ±8.3 295

For mediocre and high tmax values there is an improvement of about 10% in
results between 100th and 150th generation. Mean values for higher tmax are the best
of all results obtained during the experiment. In tab. 7 there is one more comparison
- inserting heuristic is the same as in tab. 6 but removing heuristic is not performed.

Table 7. Comparison 2 between results for Ng=100 and Ng=150 - incomplete graph version (inserting:
highest f itnessGain2/travelTimeIncrease ratio, no removing mutation)

Ng = 100 Ng = 150
tmax Mean CI for mean Max Mean Ci for mean Max
500 46.7 ±3.1 66 47.5 ±3.3 66
1000 88.2 ±6.0 132 88.3 ±6.0 132
1500 153.2 ±11.3 213 157.4 ±13.5 225
2000 206.9 ±10.3 249 216.6 ±12.8 283
2500 222.2 ±12.2 276 227.2 ±13.9 292
3000 247.2 ±12.3 295 257.3 ±15.2 331

While mean results differ slightly, one can see a significant improvement of best
runs for higher tmax - these are best routes obtained during the experiment.

73

Krzysztof Ostrowski, Jolanta Koszelew

Fig. 8. Average fitness of the best individual from the n-th generation for both algorithms (tmax = 2000)
IG heuristic: inserting: highest f itnessGain2/travelTimeIncrease, removing: highest travel time loss

CG heuristic: inserting: highest f itness/travelTime after mutation, removing: lowest fitness loss

CG converges more quickly (as seen in fig. 8) and improvements between
100th and 150th generation are generally very small. While increasing number of
generations leads to the best mean and maximum algorithm output in IG, it also
results in more time consumption.

Table 8. Average execution time (in miliseconds) of both algorithm versions and various tmax values

tmax 500 1000 1500 2000 2500 3000
CG 60 90 120 140 170 220
IG (Ng = 100) 40 60 80 90 100 110
IG (Ng = 150) 60 90 110 120 140 160

One can see (table 8) that IG is faster than CG. It results from the fact that
inserting mutation is more time consuming when the graph is complete - there are
more different possibilities to check. Increasing Ng to 150 in IG lengthen execution
time by 40-50% and then it is similar to CG time. Edge completion time in CG was
not included. Algorithms were implemented in C++ and run on Intel Pentium M740
1.7 GHz CPU.

74

The comparison of genetic algorithms which solve Orienteering Problem using ...

5. Conclusions

Comparison results show that the performance of both algorithm versions depends
strongly on tmax value. For lower tmax (500-1000) complete graph version (CG) gives
better mean results. It also gives routes with higher maximum profits. For higher tmax

values incomplete graph version (IG) excels in terms of average results. This effect
is even more pronounced when increasing Ng. In this case maximum results are also
higher for IG. It can be also seen that the choice of heuristic influences the algorithm
results i.e. adding removing mutation improves CG significantly contrary to IG.

It should be noted that a lot depends on a network itself. Results obtained using
the network from our experiment can be different when using another network. Thus,
it is recommended to check both algorithm version with various heuristics on a
given network and we plan to test algorithms on even bigger network of 500 tourist
facilities. It is also recommended to compare CG with GLS [11] on benchmark tests,
as the latter is considered the most effective heuristic operating on complete graphs.

References

[1] I. Chao, B. Golden, E. Wasil, Theory and methodology - the team orienteering
problem, European Journal of Operational Research 88, 464-474, 1996.

[2] A. Garcia, M.T. Linaza, O. Arbelaitz, P. Vansteenwegen, Intelligent Routing
System for a Personalised Electronic Tourist Guide, Springer, 4, 185-197, 2009.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, 1979.

[4] B. Golden, L. Levy, R. Vohra, The orienteering problem, Naval Research
Logistics 34, 1987.

[5] B. Golden, Q. Wang, L. Liu, A Multifaceted Heuristic for The Orienteering
Problem, Naval Research Logistics, vol. 35, pp. 359-366, 1988.

[6] M. Hayes, J. M. Norman, Dynamic Programming in Orienteering: Route
Choice and the Siting of Controls, Journal of the Operational Research Society,
vol. 35, no. 9, pp. 791-796, 1984.

[7] G. Laporte, S. Martello, The Selective Traveling Salesman Problem, Discrete
Applied Mathematics, vol. 26, pp. 193-207, 1990.

[8] J. Koszelew, Logistics for globetrotters - innovative software component for
e-tourism, Logistics, vol. 6, 54-56, 2010.

[9] A. Piwonska, J. Koszelew, A Memetic Algorithm for a Tour Planning in the
Selective Travelling Salesman Problem on a Road Network Springer, vol. 6804,
684-694, 2011.

75

Krzysztof Ostrowski, Jolanta Koszelew

[10] R. Ramesh, K. M. Brown, An Efficient Four-Phase Heuristic for the General-
ized Orienteering Problem, Computers and Operations Research, vol. 18, no. 2,
pp. 151-165, 1991.

[11] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. Vanden Berghe, D. Van
Oudheusden, A personalized tourist trip design algorithm for mobile tourist
guides, Applied Artificial Intelligence, 22:10, 964-985, 2008.

[12] W. Souffriau, P. Vansteenwegen, Tourist Trip Planning Functionalities:
State-of-the-Art and Future, Springer, vol. 6385/2010, 474-485, 2010.

[13] M.F. Tasgetiren, A.E. Smith, A Genetic Algorithm for the Orienteering
Problem, Proceedings of the 2000 Congress on Evolutionary Computation, San
Diego, CA, pp. 1190-1195, 2000.

[14] F. Tricoire, M. Romauch, K. Doerner, R. Hartl, Heuristics for the multi-period
orienteering problem with multiple time windows, Computers and Operations
Research 37 (2), 351-367, 2010.

[15] T. Tsiligirides, Heuristic Methods Applied to Orienteering, Journal of
Operational Research Society, vol. 35, no. 9, pp. 797-809, 1984.

[16] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, D. Van Oudheusden, A
guided local search metaheuristic for the team orienteering problem, European
Journal of Operational Research in Press, vol. 196, 2008.

[17] P. Vansteenwegen, W. Souffriau, D. Van Oudheusden, The orienteering
problem: A survey, Elsevier, vol. 209, 2010.

[18] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, D. Van Oudheusden, The
City Trip Planner: An expert system for tourists, Elsevier, vol. 38, 2011.

[19] Q. Wang, X. Sun, B.L. Golden, J. Jia, Using Artificial Neural Networks to Solve
the Orienteering Problem, Annals of Operations Research, vol. 61, pp. 111-120,
1995.

[20] http://piwonska.pl/research

PORÓWNANIE ALGORYTMÓW GENETYCZNYCH
ROZWIĄZUJĄCYCH ORIENTEERING PROBLEM

PRZY POMOCY GRAFU PEŁNEGO I NIEPEŁNEGO

Streszczenie Celem pracy było porównanie dwóch odmian algorytmu (wersja dla grafu
pełnego i niepełnego) rozwiązujących Orienteering Problem (OP). W większości artykułów
dotyczących OP graf jest pełny, a jego krawędzie spełniają nierówność trójkąta, natomiast
w naszej wersji takie założenia mogą nie być spełnione. Może to być bardziej praktyczne

76

The comparison of genetic algorithms which solve Orienteering Problem using ...

ponieważ sieci transportowe są grafami, ktore nie muszą spełniać tych warunków. W
takich przypadkach grafy sa zazwyczaj uzupełniane fikcyjnymi krawędziami, a następnie
działają na nich algorytmy rozwiązujące klasyczną wersje OP, które operują na grafie
pełnym. Artykuł odpowiada na pytanie: czy pod względem jakości wyników i czasu obliczeń
lepiej jest przekształcać graf do klasycznej formy OP przed uruchomieniem algorytmu w
wersji dla grafu pełnego czy rozwiązywać OP na grafie niezmienionym i nie spełniającym
dodatkowych założen (wersja dla grafu niepełnego)? Eksperyment został przeprowadzony
na prawdziwej sieci transportowej w Polsce, a jego wyniki sugerują, że warto sprawdzać
obie wersje algorytmu na konkretnych sieciach.

Słowa kluczowe: orienteering problem, OP, sieć transportowa, algorytm genetyczny, GA,
grap pełny, graf niepełny

Artykul zrealizowano w ramach pracy badawczej S/WI/01/10.

77

