
ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ. INFORMATYKA

DESIGN OF PSEUDO-EQUIVALENT MICROPROGRAM
AUTOMATA ON PROGRAMMABLE LOGIC DEVICES

Irena Bulatowa, Mateusz Radziwoniuk

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In this paper, a new method of synthesis of microprogram automata from ASM
specification is presented. This method allows converting pseudo-equivalent automaton to
an equivalent one by eliminating the zero-value output sets appearing in additional inter-
nal states. The proposed method is based on a modified model of microprogram automaton,
which permits changing the output signals only in the basic internal states, thereby eliminat-
ing the zero-value sets of output signals generated in additional states of pseudo-equivalent
automata. This allows removing the adverse effects of introducing additional states and pro-
vides a wider application of numerous methods for the synthesis of pseudo-equivalent micro-
program automata. The experimental results show that the cost of realization of the proposed
structure in programmable logic devices increases insignificantly, but then it leads to extend
the field of application synthesis methods based on the introduction of additional internal
states.

Keywords: microprogram automaton, Algorithmic State Machine (ASM), pseudo-
equivalent automaton, additional internal states, programmable logic devices (PLD)

1. Introduction

Developing effective methods for synthesis of microprogram automata on pro-
grammable logic devices (PLD) is a very important problem because the majority
of control systems are based on the principle of microprogram control [7]. The be-
havior of microprogram automata is very often specified by Algorithmic State Ma-
chine (ASM) charts [2], which are very useful and convenient methods of control
algorithm description. Lots of methods for the synthesis of microprogram automata
from ASM specifications have been developed [2,3,5,1,6]. Some of these synthesis
methods require the introduction of additional internal states for receiving special
features of designed microprogam automata. For example, some methods based on
additional internal states may allow simplifying the microprogram automata scheme

Zeszyty Naukowe Politechniki Białostockiej. Informatyka, vol. 7, pp. 17-29, 2011.

17

Irena Bulatowa, Mateusz Radziwoniuk

and reducing the cost of their realization [1], and other methods [1,6] allow including
restrictions on the number of inputs of components used for microprogram automata
realization.

However, the introduction of additional internal states is not always acceptable in
microprogram automata design. This is due to the fact that the zero-value output sets
are generated in additional internal states. It may result in damage to the functioning
of the designed microprogram automata when the output signals must be maintained
at a constant high level and any changes of the signal level are not permitted.

As a result of the introduction of additional internal states during the synthesis
process, the pseudo-equivalent automaton will be received. Pseudo-equivalent au-
tomaton generates the same sequence of output signals as original automaton, but
differs from it in that the zero-value output sets are generated in the output sequence
of pseudo-equivalent automaton in additional states. That fact significantly reduces
the application area of synthesis methods based on the introduction of additional in-
ternal states.

In this paper, a new method for the synthesis of microprogram automata from
ASM specification is presented. This method allows converting the pseudo-equivalent
automaton into an equivalent one by eliminating the zero-value output vectors appear-
ing in additional internal states. The proposed method is based on a modified model
of microprogram automaton, which allows triggering the output signals only in basic
internal states thereby eliminating the zero-value sets on automaton outputs. The gen-
eration of an additional control signal in the proposed model leads to a slight increase
in the complexity of automaton realization, but then it makes it possible to apply nu-
merous methods for the synthesis of pseudo-equivalent microprogram automata, even
in such applications in which it was previously impossible.

2. Synthesis of microprogram automata from ASM

Due to the principle of microprogram control [7], any complex operation exe-
cuted by a digital device is represented as a sequence of elementary operations
Y = {y1, . . . ,yN}, called microoperations. The subset Y t⊆Y of microoperations ex-
ecuted in the same clock period forms a microinstruction. The order of microinstruc-
tions execution is determined by logical conditions X = {x1, . . . ,xL}. The control
algorithm specified in terms of microoperations and logical conditions is called a
microprogram and the automaton, which realizes the microprogram, is called a mi-
croprogram automaton [6].

The Algorithmic State Machine (ASM) charts [2] (Fig.1) are widely used for
control algorithm specification. Each operator vertex of ASM contains a microin-

18

Design of pseudo-equivalent microprogram automata on programmable logic devices

struction Y t⊆Y , Y = {y1, . . . ,yN} defined as a collection of microoperations which
are executed in the same clock period, and Y t = ∅ is acceptable. One of the logical
conditions from the set X = {x1, . . . ,xL} is written in each conditional vertex and it is
possible to write the same logical condition in different vertices [2].

The finite state machine (FSM) is used as a model of microprogram automata.
Synthesis of FSM from the ASM chart begins from the construction of marked ASM,
due to which the ASM chart is marked by labels A = {a1, . . . ,aM} corresponding to
internal states of FSM [2]. Standard approaches to Moore and Mealy FSM synthesis
are well known [2,3]. Labels and corresponding internal states introduced by these
standard algorithms will be called basic labels and basic internal states.

Due to the standard algorithm for the synthesis of Mealy FSM from ASM chart
[3], the input vertex following the initial vertex Begin and the input of vertex End
are marked by the symbol a1 (corresponding to the initial state of automaton), then
the inputs of vertices following operator vertices are marked by symbols a2, . . . ,aM.
This algorithm of ASM marking allows building FSM in which the output functions
y1, . . . ,yN will depend on the current internal states and input variables x1, . . . ,xL.

Fig. 1. An example of ASM chart

A graph (or transition table) of automaton is constructed from the marked ASM
by defining all the transition paths between internal states: am X(am,as) Y (am,as) as,

19

Irena Bulatowa, Mateusz Radziwoniuk

where X(am,as) – the product of logical conditions on the transition path from am to
as, am,as ∈ A; Y (am,as) – microinstruction generated on this transition.

For Moore automaton synthesis, the marked ASM is constructed as follows [2]:
vertices Begin and End are marked by the same symbol a1, and all operator vertices
are marked by different symbols a2, . . . ,aM. This algorithm allows implementing the
FSM with output functions y1, . . . ,yN depending only on the current state of the au-
tomaton.

Many methods for FSM synthesis from ASM have been developed in which
the additional internal states are introduced besides the basic internal states. In such
methods, the additional symbols aM+1, . . . ,aM+K are used for marking ASM that
leads to the introduction of additional internal states of FSM.

Increasing the number of internal states allows the automata to acquire new
properties. For example, in the synthesis method proposed in [1], additional states
are used for minimizing the number of transitions between states that can reduce the
complexity of automata realization.

In methods [1,6], the additional states are introduced to decrease the dependency
of the transition and output functions on input variables. In these algorithms, after
the standard marking of ASM, the additional labels aM+1, . . . ,aM+K are placed at
the inputs of conditional vertices. This makes it possible to reduce the rank of the
conjunctions X(am,as) defining the automaton transitions, which results in reducing
the rank of the products in transition functions d1, . . . ,dR and in output functions
y1, . . . ,yN . It may be important if there are restrictions on the number of inputs of
components used for FSM realization.

As a result of the introduction of additional states, the pseudo-equivalent au-
tomaton will be obtained [6]. Let z1, . . . ,zk be some sequence of input variables vec-
tors on automaton inputs, and w1, . . . ,wk will be the corresponding sequence output
vectors generated on automaton outputs. Two automata S1 and S2 are called equiva-
lent, if they generate the same output sequences w1, . . . ,wk for each input sequence
z1, . . . ,zk. An automaton S2 is called pseudo-equivalent to automaton S1, if it gen-
erates the same output sequence as S1, but in its output sequence zero-value output
vectors may appear as a result of the introduction of additional states [6].

Zero-value output vectors correspond to paths in ASM which don’t pass through
an operator vertex (for Mealy automaton) or to paths which don’t lead to an operator
vertex (for Moore automaton). Such paths end in some additional label a j, j > M. The
appearance of zero-value vectors may be unacceptable in some applications when it
is important to maintain the output signals at a constant high level.

Let us consider an example of ASM shown in Fig.2. At the beginning, the ASM
has been marked by symbols a1, . . . ,a5 according to the standard algorithm for the

20

Design of pseudo-equivalent microprogram automata on programmable logic devices

synthesis of Moore FSM [2]. Then, the additional labels a6, a7 and a8 have been
introduced to reduce the dependency of FSM transition functions from input vari-
ables [1]. According to this algorithm, the inputs of conditional vertices connected
by the edge with the output of other conditional vertex are marked by additional la-
bels, which leads to the introduction of additional internal states. As a result, each
transition path of FSM will depend on no more than one logical condition, which
allows limiting the maximum rank of conjunctions in transition functions of Moore
FSM. This can be useful when there are hard restrictions on the number of inputs of
elements used for circuit realization.

Fig. 2. Marked ASM for synthesis of Moore FSM with additional labels

However, the introduction of additional internal states may be unacceptable in
some applications. Let us consider the transition path between basic states a2 and
a5 on ASM presented in Fig.2. In both states, the output signal y2 is generated. If
in practical application, it is required to maintain the signal y2 at a constant high
level on the transition from a2 to a5, the introduction of additional states between
a2 and a5 will be unacceptable, because in additional states a6, a7 and a8 signal
y2 will be temporarily triggered to a low level. A similar situation is also possible
for output signal y1 on transition from a2 to a4 (Fig.2). This fact narrows the field

21

Irena Bulatowa, Mateusz Radziwoniuk

of application of synthesis methods based on the introduction of additional internal
states and requires a preliminary inspection of the control algorithms before applying
such synthesis methods.

In this paper, we propose a modified model of microprogram automaton, which
allows eliminating the zero-value output sets in additional internal states and gives the
ability of a wider application of synthesis methods of pseudo-equivalent automata.

3. Modified model of microprogram automaton

The modified model of microprogram automata is presented in Fig.3. The register RG
stories the current automaton state code e1, . . . ,eR , where R =]log2M[is the least in-
teger greater than or equal to log2M. The combinational logic circuit CL implements
the output functions y1, . . . ,yN and the transition functions d1, . . . ,dR.

Fig. 3. Modified structure of microprogram automata

An additional register RGY is introduced in this model to store the output func-
tions values y1, . . . ,yN . The special pulse CLKO is used to change the content of the
RGY register. The signal CLKO is generated on the basis of clock signal z formed
by combinational circuit CL (Fig.4). The waveforms for CLKO signal generation are
shown in Fig.4, where the clock periods corresponding to the basic internal states
are marked by arrows. An additional signal z = 1 is formed by combinational logic
circuit CL only in the basic internal states, but in additional states z = 0.

This causes that the content of register RGY will be changed only in basic inter-
nal states, and the zero-value output vectors generated in the additional states will not
be written to register RGY , so they never appear on the automaton outputs y1, . . . ,yN .

22

Design of pseudo-equivalent microprogram automata on programmable logic devices

Fig. 4. Waveforms for CLKO signal forming

The implementation of additional register RGY in PLD structures does not in-
crease the number of used macrocells for FSM realization, since the internal memory
elements of macrocells are used for its implementation. The complexity of realization
of the proposed structure has increased insignificantly; it is related to the implemen-
tation of only one additional function z.

To implement function z, all microinstructions generated in basic internal states
should be expanded by one extra microoperation z that will be correspond to forming
the microoperation signal z = 1 only in the basic internal states.

In our example (Fig.3), the ASM was marked for synthesis of Moore FSM and
then the additional states a6, a7 and a8 were introduced. According to the proposed
synthesis method, an additional microoperation z must be inserted in all operator ver-
tices of ASM, because each operator vertex corresponds to the basic state of Moore
FSM.

The structure table of Moore automaton with additional microoperation z is
shown in Table 1, where each transition is described by the following columns: am is
the current FSM state, K(am) is the code of the state am,as is the next state, K(as) is
the code of the state as, X(am,as) is the conjunction of inputs determining the transi-
tion, Y (am) is the microinstruction generated in the state am, D(am,as) is a collection
of transition functions for D-type memory elements.

On the basis of the structure table, the following expressions for output
functions y1, . . . ,y4, transition functions d1, . . . ,d3 and for additional function z are
obtained:
y1 = e1e2e3 + e1e2e3
y2 = e1e2e3 + e1e2e3
y3 = e1e2e3 + e1e2e3
y4 = e1e2e3 + e1e2e3

23

Irena Bulatowa, Mateusz Radziwoniuk

Table 1. Structure table of automaton

am K(am) as K(as) X(am,as) Y (am) D(am,as)
a1 000 a2 001 1 – d3
a2 001 a3 010 x1 y1,y2,z d2

a6 101 x1 d1 d3
a3 010 a4 011 1 y3,y4,z d2 d3
a4 011 a1 000 1 y1,y3,z d3
a5 100 a1 000 1 y2,y4,z d3
a6 101 a3 010 x2 – d2

a7 110 x2 d1 d2
a7 110 a6 101 x3 – d1 d3

a8 111 x3 d1 d2 d3
a8 111 a4 011 x4 – d2 d3

a5 100 x4 d1

z = e1e2e3 + e1e2e3 + e1e2e3 + e1e2e3
d1 = e1e2e3x1 + e1e2e3x2 + e1e2e3x3 + e1e2e3x3 + e1e2e3x4
d2 = e1e2e3x1 + e1e2e3 + e1e2e3x2 + e1e2e3x2 + e1e2e3x3 + e1e2e3x4
d3 = e1e2e3 + e1e2e3x1 + e1e2e3 + e1e2e3x3 + e1e2e3x3 + e1e2e3x4

In our example, the complexity of FSM realization has increased slightly due
to forming of an additional function z, which contains the same products as output
functions of Moore FSM.

The zero-value output sets in additional internal states could also be eliminated
in another way by simple repeating in additional states of the microoperations that
are generated in the preceding basic state. However, such an approach leads to a
significant increase in the complexity of output functions realization, so it will be
less effective compared with the proposed method.

4. Experimental results

The proposed method was tested using the control algorithms from the ASM library
of the Abelite EDA tool [4]. To perform the experiments, three methods using addi-
tional states have been implemented and compared: M1 – the method, in which the
zero-value output vectors appear in additional states [1]; M2 – the proposed method,
in which the additional signal z is formed to eliminate the zero-value output sets;
M3 – the method, in which the zero-value output sets are eliminated by the repeating
in additional states of the microoperations from the previous basic state. All these
methods introduce the same number of additional states to separate all conditional

24

Design of pseudo-equivalent microprogram automata on programmable logic devices

vertices on the ASM chart. For all the methods, the number of used macrocells of
PLD were compared for the realization of automata on FLEX10K and MAX9000
devices of Altera, which are the typical representatives of two PLD classes: CPLD
(MAX9000 device family) and FPGA (FLEX10K devices).

Table 2 shows the results of comparison of methods M1, M2 and M3 for the
FLEX10K device family, where "ASM" is the name of the example from the ASM
library, L, N, S, K are the numbers of inputs, outputs, states and additional states of au-
tomaton, respectively, CM1, CM2, CM3 are the numbers of macrocells of the FLEX10K
device used for the realization automata for synthesis methods M1, M2 and M3, re-
spectively. For methods M2 and M3, the values PM2 and PM3 have been calculated
as: PM2 = CM2−CM1

CM1
, PM3 = CM3−CM1

CM1
, where PM2 and PM3 are the percent of growth of

the number of used macrocells for methods M2 and M3, respectively, in comparison
with method M1.

Analysis of the obtained results show that the number of used macrocells for the
proposed method M2 increases on average 3.65% (1.38% in the best case) in com-
parison with method M1. The method M3, as it was expected, requires a significantly
greater increase in the amount of hardware, on average 23.75% (even 38.19% in the
worst case), so method M3 is much less effective in comparison with the proposed
method M2.

The results presented in Table 3 show the dependency of value PM2 on such a
parameter as the percentage of conditional blocks in ASM (BX/B), where B is the
whole number of blocks in ASM, BX is the number of conditional blocks, L, N, S are
the numbers of inputs, outputs, and states of automaton, respectively.

The results from Table 3, which show the correlation between the percentage of
conditional block in ASM (BX/B) and the growth of the number of macrocells used
for FSM realization by method M2, are also presented in a scatter graph in Fig.5. The
pattern of dots suggests the falling correlation between the parameters, thus for the
tested examples the complexity growth rate for method M2 reduces with the increase
of the percentage of conditional blocks in ASM.

Table 4 shows the results of comparison of methods M1, M2 and M3 for real-
ization of automata on MAX9000 devices of Altera.

Analysis of the results presented in Table 4 shows that the number of used
macrocells for the proposed method M2 increases on average 3.43% (0.55% in the
best case) in comparison with method M1. And in the case of method M3, the com-
plexity of realization increases significantly, on average 17.95% (even 39.78% in the
worst case), so the proposed method M2 is a more effective approach to eliminating
zero-value output sets.

25

Irena Bulatowa, Mateusz Radziwoniuk

Table 2. Comparison of synthesis methods for realization on FLEX 10K device family

ASM L N S K CM1 CM2 CM3 PM2 PM3

acdl 16 27 174 151 330 335 398 1.52% 20.61%
araf 25 65 124 48 230 240 279 4.35% 21.30%

ass13 5 25 38 19 89 91 110 2.25% 23.60%
berg 21 51 121 51 224 234 285 4.46% 27.23%
cpu 14 29 44 21 83 87 96 4.82% 15.66%
cyr 20 75 132 55 244 258 292 5.74% 19.67%
e1 12 13 114 90 201 205 274 1.99% 36.32%
e6 11 20 41 23 82 86 93 4.88% 13.41%
e15 13 20 85 67 163 167 198 2.45% 21.47%

klain 27 61 134 55 251 258 300 2.79% 19.52%
kobz 19 53 130 59 235 245 293 4.26% 24.68%
lcu 15 24 81 58 144 150 199 4.17% 38.19%
lior 24 31 116 79 188 198 255 5.32% 35.64%
max 26 41 105 56 189 197 233 4.23% 23.28%

micks 21 45 106 53 195 200 254 2.56% 30.26%
pilot 27 22 60 33 111 115 138 3.60% 24.32%
raz 23 72 131 60 238 248 300 4.20% 26.05%
sasi 19 54 129 54 240 251 293 4.58% 22.08%

structm 33 36 106 87 217 220 234 1.38% 7.83%
v16 14 18 89 72 164 167 211 1.83% 28.66%
oshr 19 72 144 53 257 266 307 3.50% 19.46%
e16 13 18 85 67 161 166 190 3.11% 18.01%
e8 13 20 85 67 163 167 198 2.45% 21.47%

bcomp 18 39 68 33 122 129 145 5.74% 18.85%
asm1 15 22 32 19 58 61 79 5.17% 36.21%

Average 3.65% 23.75%

5. Conclusions

The proposed method can be used for eliminating zero-value output vectors, which
appear in additional internal states of microprogram automata. This method is based
on a modified model of microprogram automata, which allows removing the adverse
effects of introducing additional states in exchange for a slight increase in the amount
of hardware. The experimental results show that the proposed method is more effec-
tive (on average 15.37% for realization on FLEX 10K devices and 19.11% for real-
ization on MAX9000 devices) than the approach based on repeating output signals in
additional states.

26

Design of pseudo-equivalent microprogram automata on programmable logic devices

Table 3. Dependency of synthesis results on parameters of ASM and FSM

ASM L N S B BX BX/B CM1 CM2 PM2

acdl 16 27 174 194 171 88.14% 330 335 1.52%
alf 31 74 127 160 83 51.88% 241 262 8.71%
araf 25 65 124 134 58 43.28% 230 240 4.35%

ass13 5 25 38 52 33 63.46% 89 91 2.25%
bech 18 39 68 72 37 51.39% 119 128 7.56%
berg 21 51 121 132 62 46.97% 224 234 4.46%
bs 19 13 127 144 127 88.19% 214 219 2.34%
cat 11 22 30 37 20 54.05% 58 62 6.90%
cpu 14 29 44 49 26 53.06% 83 87 4.82%
cyr 20 75 132 140 63 45.00% 244 258 5.74%
e1 12 13 114 135 111 82.22% 201 205 1.99%
e6 11 20 41 50 32 64.00% 82 86 4.88%

e15 13 20 85 102 84 82.35% 163 167 2.45%
klain 27 61 134 153 74 48.37% 251 258 2.79%
kobz 19 53 130 141 70 49.65% 235 245 4.26%
lcu 15 24 81 99 76 76.77% 144 150 4.19%
lift 14 30 42 56 24 42.86% 79 86 8.86%
lior 24 31 116 134 97 72.39% 188 198 5.32%
max 26 41 105 113 64 56.64% 189 197 4.23%

micks 21 45 106 115 62 53.91% 195 200 2.56%
pilot 27 22 60 70 43 61.43% 111 115 3.60%

Fig. 5. Scatter graph for complexity growth rate in relation to percentage of conditional blocks

27

Irena Bulatowa, Mateusz Radziwoniuk

Table 4. Comparison of synthesis methods for realization on MAX9000 device family

ASM L N S K CM1 CM2 CM3 PM2 PM3

alf 31 74 127 50 146 153 166 4.79% 13.70%
araf 25 65 124 48 140 152 164 8.57% 17.14%

ass13 5 25 38 19 54 55 61 1.85% 12.96%
bech 18 39 68 33 69 73 74 5.80% 7.25%
berg 21 51 121 51 133 138 171 3.76% 28.57%
big 18 28 127 110 182 183 189 0.55% 3.85%
bs 19 13 127 110 165 168 184 1.82% 11.52%
e1 12 13 114 90 166 167 196 0.60% 18.07%
e15 13 20 85 67 110 111 125 0.91% 13.64%

klain 27 61 134 55 158 163 184 3.16% 16.46%
kobz 19 53 130 59 130 138 163 6.15% 25.38%
lcu 15 24 81 58 93 95 130 2.15% 39.78%
lift 14 30 42 10 50 51 53 2.00% 6.00%

max 26 41 105 56 128 130 151 1.56% 17.97%
micks 21 45 106 53 114 121 138 6.14% 21.05%

pp 20 28 89 72 120 121 137 0.83% 14.17%
pilot 27 22 60 33 62 67 82 8.06% 32.26%
sasi 19 54 129 54 136 144 175 5.88% 28.68%
oshr 19 72 144 53 150 154 174 2.67% 16.00%
e8 13 20 85 67 107 108 125 0.93% 16.82%

bcomp 18 39 68 33 73 77 86 5.48% 17.81%
asm1 15 22 32 19 38 39 47 2.63% 23.68%
asm2 15 22 31 17 40 41 44 2.50% 10.00%

Average 3.43% 17.95%

28

Design of pseudo-equivalent microprogram automata on programmable logic devices

References

[1] Baranov S., Sklarov V., Digital systems based on programmable circuits with
matrix structure, Moscow: Radio i sviaz, 1986 (in Russian).

[2] Baranov S., Logic Synthesis for Control Automata, Kluwer Academic Publish-
ers, 1994.

[3] Baranov S., Logic and System Design of Digital Systems, Tallinn: TTU Press
and SiB Publishers, 2008.

[4] Baranov S., High level synthesis in EDA tool "Abelite", Electronics and
Telecommunications Quarterly, 2009, Vol.55, No.2, pp. 123-156.

[5] Barkalov A., Titarenko L., Logic synthesis for compositional microprogram con-
trol units, Berlin: Springer-Verlag, 2008.

[6] Salauyou V., Klimowicz A., Logical synthesis of digital devices in PLD struc-
tures, Bialystok: OWPB, 2010 (in Polish).

[7] Wilkes M.V., The Genesis of Microprogramming, IEEE Annals of the History
of Computing, 1986, V.8, No.2, pp.116-126.

PROJEKTOWANIE PSEUDOEKWIWALENTNYCH
AUTOMATÓW MIKROPROGRAMOWALNYCH

NA UKŁADACH PLD

Streszczenie Metody syntezy automatów mikroprogramowalnych oparte na wprowadze-
niu dodatkowych stanów wewnętrznych prowadzą do otrzymania automatów pseudoekwi-
walentnych. Sekwencja słów wyjściowych takich automatów naruszana jest pojawieniem
się zerowych słów wyjściowych w stanach dodatkowych, co nie zawsze jest dopuszczalne
w zastosowaniach praktycznych. W artykule została przedstawiona nowa metoda syntezy
automatów mikroprogramowalnych, która pozwala przekształcić automat pseudoekwiwa-
lentny na postać ekwiwalentną. Zaproponowana została zmodyfikowana struktura automatu
mikroprogramowalnego, w której zmiana sygnałów wyjściowych jest możliwa wyłącznie w
stanach podstawowych, tym samym eliminuje się słowa zerowe na wyjściach automatu. Ba-
dania eksperymentalne pokazały, że złożoność realizacji zaproponowanej struktury na ukła-
dach programowalnych wzrasta w nieznacznym stopniu, natomiast takie podejście pozwala
znacznie rozszerzyć obszar zastosowania metod syntezy automatów mikroprogramowalnych
opartych na wprowadzeniu dodatkowych stanów wewnętrznych.

Słowa kluczowe: automat mikroprogramowalny, sieć działań, automat pseudoekwiwa-
lentny, dodatkowe stany wewnętrzne, programowalne układy logiczne.

29

