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Abstract: In this paper, load balancing mechanisms in a parallel #hgorof vascular
network development are investigated. The main attentiofocused on the perfusion
process (connection of new cells to vascular trees) as ltdanost time demanding part
of the vascular algorithm. We propose several techniquegsaiim at balancing load among
processors, decreasing their idle time and reducing theramitation overhead. The core
solution is based on the centralized dynamic load balarmimgoach. The model behaviors
are analyzed and a tradeoff between the different mechanisnfound. The proposed
mechanisms are implemented on a computing cluster with sheotithe message passing
interface (MPI) standard. The experimental results shawttie introduced improvements
provide a more efficient solution and consequently furticeeerate the simulation process.
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1. Introduction

The last decade has seen a revolution in high performaneatsic computing [1].
This is mainly due to a tremendous development of paralleimgders. Because
of physical and economic limitations of processor freqyescaling (e.g. power
consumption and consequently heat generation) both irydasid science prefer
to use many moderately fast processors, rather than a diigilespeed processing
unit. Nowadays, computing clusters and multi-core/mpitteessor computers are
becoming widespread platforms [2]. As a results, many $istsnhave gained an
easy access to parallel machines able to support an ewgg-gismand for high-speed
processing.
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In this paper, we focus on applying parallel computing to eliod) and
simulation in biomedical research on vascular networkscwWar networks play
a very important role in the detection process of variouhgagical anomalies
since changes in their structure and function can be direeatlised by diseases [3].
Moreover, when a contrast agent is administrated, thesmmiwal or functional
modifications can appear in medical images. Therefore, tbdefimg of vascular
systems can help to understand the mechanisms of dynamgeifoamation and
support the development of methods to detect early disedseators.

Nevertheless, one of the most important and simultanedbasiymost difficult
challenges in model designing is to choose the level of ldetaiinclude in the
model [4]. A high quality vascular model has to take into astdhe most essential
physiological and anatomical properties and to disregahbd elements whose
role is insignificant. Such a model should also be effectivgriactical cases, i.e.
computational simulations must be performed in a reasentivie. Therefore, it
seems to be very useful and desirable to take advantage alfgbanomputing in
modeling of living organisms and particulary in the case led vascular system
modeling. Firstly, we are able to provide a significant iase in computational
performance by splitting problem into parts that are pented by separate processors
in parallel [5]. Secondly, using multiple processing umiften allows us to provide
a more precise solution or to solve a larger problem in a rede amount of
time. Moreover, parallel computers are very useful whensidmae problem has to
be evaluated multiple times, with different parametersrstance.

In parallel systems, computations are decomposed ints.taskrder to achieve
an efficient solution, overheads of the parallel tasks havagetminimized [6]. One
ought to strive to reduce the total amount of time some psmssare idle while the
others are still busy. Secondly, the amount of time spentdanmunication between
processors has to be also minimized. These two objectieesfaan in conflict with
each other, therefore one should find an optimal tradeoffdse them and propose
load balancing mechanisms able to spread the tasks evenlysabe processors.

Load balancing techniques used in parallel algorithms eglorbadly classified
into two major categories: static and dynamic. In the fortype, usually referred
to as the mapping problem [7] or scheduling problem, tasksdastributed among
processors before the execution of the algorithm based orioa fnowledge.
Several techniques for static load balancing have beerlgfmae e.g. round robin
algorithm [1], simulated annealing (stochastic optimatalgorithm) [8], [9] or
real-coded genetic algorithms [10]. However, there exidtsge class of applications
that workloads of tasks are uneven and unpredictable andamayge during the
computation. Therefore, for these applications we are bl#t 8 spread the tasks
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evenly across processors beforehand. In this case, dyriaeadcbalancing (DLB)
schemes are needed. In DLB, the decision on task arrangesienade during
the execution of the program based on the current load stistoeover, such an
approach can be more appropriate in the case of heterogepewmallel machines
with additional sources of an external load. Due to a big astlgrowing number of
different dynamic load balancing techniques, we refer tagler to [11] for a detailed
survey of DLB algorithms.

In our previous studies, we developed a two-level physioiignodel of vascu-
larization [12], [13]. It consists of a macroscopic modelesio simulate growth and
pathological structural modifications of vascular netwankd a microvascular model
responsible for simulation of blood and contrast agentspart through capillary
walls [14]. Initially, we made use of a sequential algoritbinvascular development
to obtain the structure of the vascular network. The vasclgaelopment results from
a progressive increasing number of cells and consequemitpgressive increasing
number of vessels that support blood supply for these c8llidsequently, we
introduced the basic [15] and improved [16] parallel soln$i of vascular growth
algorithm. These two parallel solutions were implementadaaccomputing cluster
with the use of the message passing interface (MPI) staritidtd

In this paper, we propose mechanisms that try to achieva@adeload among
processors and reduce the communication overhead in th#gbanodeling of the
vascular network growth. Both static and dynamic algorghare used. We consider
a centralized model, in which tasks are generated at theatestheduler (master
processor) and are allocated to slave processors. Wokklafatthe tasks are uneven
and it is impossible to estimate their execution times beeaach particular job has
an indeterminate number of steps to reach its solution. tlitiad, we have to deal
with a dynamically changing structure of vascular trees.anelyze various model
behaviors in a parallel environment and propose a tradedffden the different load
balancing strategies in order to provide a more efficieniti and consequently to
further accelerate the simulation process.

The rest of the paper is organized as follows. In the nexiagcthe vascular
model is described and sequential and both parallel algostof vascular network
development are recalled. In section 3 the load balancirgharmésms are presented.
An experimental validation of the proposed mechanisms ifpeed in section 4.
The last section contains the conclusion and future works.
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2. Model Description

In the macroscopic part of the model we can distinguish twinreéements: the
tissue and the vascular network. The tissue is representedsket of Macroscopic
Functional Units (MFU) that are regularly (but randomlyytdibuted inside the
specified, three-dimensional organ shape. The vasculavorietis composed of
vessels supplying the MFUs. The microvascular part of thdehis hidden in MFUs
and is responsible for the propagation of an MRI contrashisge the tissue. The
five-compartments [18] and axially distributed Blood Tis&Xchange (BTEX) [14]
contrast propagation approaches were proposed.

The most important and original part of the work presenteck lencerns
the algorithms of vascular development on macroscopicl.léMeerefore, in the
next part of this section, the macroscopic part of the moslelescribed in more
details followed by the presentation of sequential andljghi@gorithms of vascular
development.

2.1 Macroscopic model

Tissue modeling A MFU is a small, fixed size part of tissue to which a class is
assigned that determines most of functional/structulraitim of mistosis/necrosis)
and physiological features (e.g. blood flow rate, blood sues). Several classes of
MFUs can be defined to differentiate functional or pathatabregions of tissue (e.g.
tumoral, normal). Moreover, the MFU class can be changedtowe, which makes

it possible to simulate the evolution of a disease (e.g. firtepatoCellular Carcinoma
to necrotic tissue or from benign nodule to malignant tumior)order to introduce
more natural variability, certain parameters (such asdftmv rate) are described by
defined distributions.

Vascular Network Modeling Most of model features are not linked with any
specific organ. However, it is very hard to model a vasculavoek without any kind
of specialization. In our work, the model expresses theifipig of the liver. The
liver plays a major role in the metabolism and has a numbeuraftions in the body
including protein synthesis, detoxification, glycogerrate, etc. [19]. Moreover, it
stands out from other vital organs by its unique organipatifovascular network that
consists of three vessel trees. Hepatic arteries and peitad deliver blood to cells,
whereas, the hepatic venous tree is responsible for blaodport back to the heart.
In the model, each vascular tree is composed of vesselsahaticide creating
bifurcations (see Fig. 1a). A vessel segment (part of véss®leen two consecutive
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bifurcations) is represented by an ideal, rigid tube witledixadius, wall thickness,
length and position. The geometry of capillaries is not aered in the model.
These smallest vessels are hidden in the MFUs (microvasmuael). According
to the morphometrical investigation dealing with biggessals, e.g. conducted by
Zamir [20], it is assumed that a single vascular structuseahform of a binary tree.
In effect, anastomoses (e.g. mutual vessel intersectibas)may occur particulary
in pathological situations or among vessels with very smaalli are not taken into
account.

hepatic three new vessels
arteries sprouting out from candidate vessels

mother vessel: i

successive Lt
bifurcations
/ new MFU--------- Q- hepatic
\ L, veins
ll“.\‘ L
left and right portal
daughter vessels veins
a) b)

Fig. 1. Part of binary vascular trees: a) mother vessel and its twghtar vessels connected by a
bifurcation, b) new MFU perfusion by three new vessels sfimguout from candidate vessels each
from different vascular tree.

In the model, the blood is treated as a Newtonian fluid thatissferred from
hepatic arteries and portal veins to the hepatic veins giroMFUs. Its flow is
modeled as a non-turbulent streamline flow in parallel Isygaminar flow) and
governed by Poiseuille’s law:
8ul
F ’ (1)
wherel is the vessel length,is its radiusQ is the blood flow and\P is the pressure
difference between the two vessel extremities. Moreoveraeh bifurcation the law
of matter conservation has to be observed:

AP=Q

Q:Qr+QI~ (2)

It says that the quantities of blood entering a bifurcatiolodd flow in parent vessel
Q) and leaving the bifurcation (blood flows in the right and kfughter branches
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Qr + Q) are equal. Another constraint deals with the decreasisgeleadii in the
vascular trees when we move from proximal to distal segmaintascular network,
creating/describing the relation between the mother Veadeis ¢) and the radii of
its two daughters (right. and leftr)):

=rl+r/, 3

wherey varies between 2 and 3 [21].

2.2 Sequential Vascular Network Growth Algorithm

An adult organ is obtained in a vascular development protiessis modeled as
a analogy to a hyperplasia process (progressive increamingoer of cells [22]).
The simulation starts with an organ whose size is a fractibra onature one.
After parameters’ initialization, in discrete time momeiitalled cycles), the organ
enlarges its size (growth phases). The relative positiomdrdJs remain unchanged
but distances between them are increased, leading to @ppeaof empty spaces.
Subsequently, these spaces are filled by new MFUs in comgeaiubcycles. In
each subcycle, each MFU can divide and give birth to a new MFthe same
class (mitosis process) or die (necrosis process). Pridiegoof mitosis and necrosis
are sensitive to the time and they decrease exponentially the age of the MFU.
New cycle starts only when the current organ shape is tofidligl by MFUs. The
increasing number of MFUs induces the development of a l@soatwork which is
responsible for the blood delivery.

New MFUs that appear during the mitosis process are injtigtthemic, i.e.
they are not perfused by the existing vascular network. &foez, for each new
macroscopic functional unit a fixed number of the nearestfickate vessels is found.
Then, each candidate vessel temporarily creates a biimncaerfusing the MFU
(one vessel is replaced by three vessels connected by adiifur point). The spatial
position of the bifurcation is controlled by local minimtitan of the additional blood
volume necessary to the MFU perfusion (Downhill Simplexoalkipm [23]).

The above process can be regarded as a kind of competiticausemnly
one vessel in each tree can be finally desighated to perntaneatfuse the
new macroscopic functional unit. Additionally, the prableof avoiding possible
collisions between perfusing vessels is taken into accotim algorithms detects
intersections between vessels coming from the same treeoor two different
trees and rejects the related candidate vessels. Finadly, &mong the remaining
candidate vessels, the combination (a single combinatiasists on one vessel from
each tree) with the lowest sum of volumes is chosen to pemtigrerfuse the MFU
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(see Fig. 1b). Afterwards, a recalculation of vessels’ ati@ristics (i.e. pressure,
radius etc.) in the vascular trees is performed. This stepres the consistency of
the characteristics according to the assumed physical laysigtogical laws.

After the reproduction process (i.e. mitosis and perfugloocesses), comes
the degeneration phase. At this step of the algorithm, fewJ§Ean die (necrosis
process) and then all the vessels supplying these MFUscretired disappear
(retraction process). Next, the algorithm goes back todpeoduction process.

2.3 Parallel Vascular Network Growth Algorithm

In the presented sequential algorithm of vascular growthMBUs are connected
to the vascular network one by one. Each MFU perfusion ire®lthe necessity of
creating and testing a number of temporary bifurcationsedquires a great number
of calculations to face the imposed constraints to ass@redhsistency of vascular
trees. A vascular tree is consistent if: i) it has the samedfwressure and fixed blood
flow in all terminal vessels attached to MFUs and ii) the Rdilkss law in each its
vessel and the matter conservation and bifurcation lawsah &s bifurcation are
fulfilled. As a result, the perfusion process is the time dwant operation in the
organ growth simulation. Profiling results (e.g. executiomes of specific methods)
showed us that it can generally consume around 70-90% oftialeGPU time needed
to develop an adult organ. Therefore, in order to acceléhatsimulation process we
proposed two parallel vascular growth algorithms [15]] ibét spread the most time
consuming computations between processors and consgaentble to decrease
the simulation time. Moreover, these implementations imlel environment can
bring the model closer to reality where perfusion processesnherently parallel.

The two previously proposed parallel algorithms are basecthessage passing
paradigm [17] and therefore are perfectly suited for distied memory architectures.
Both algorithms use the master-slave model [5], it meansizaster/managing pro-
cessor/node generates tasks and distributes them amwafgalaulating processors.

The general scheme of the first algorithm [15] is presentedrign 2. It
parallelizes the perfusion process. The remaining prese§<. necrosis, retraction
and shape growth) are performed sequentially at the mastier. in that case, before
each perfusion phase, slave nodes do not possess the mmestt a@scular system
and tissue. Thus, at the beginning of each subcycle the nmraste has to broadcast
the latest MFUs and vascular trees. Subsequently, aftesabeential mitosis, the
parallel perfusion is carried out. In comparison to its ssqial version, here the
managing node does not make any attempt to find candidatelsesw bifurcation
points but instead it spreads these tasks over calculatidgs
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trees and tissue

[new cycle/subcycle]  [adult organ]

broadcasting
remaining processes

[sequential mitosis ]—»[ parallel perfusion ]

Fig.2. The outline of the first parallel algorithm of vascular growtAt the beginning of each
cycle/subcycle, the trees and tissue broadcasting isnpeefh Next, the sequential mitosis, parallel
perfusion and remaining vascular processes (e.g. nectasiaction) are carried out in turn. The
algorithm ends when the organ reaches its adult form.

When a computational node receives the message with sétEkdd, it attempts
to find the closest vessels and finally the optimal bifurcafioints to perfuse these
new tissue elements. Each time, when the search ends witessjdhe parameters
of the optimal bifurcation are sent to the master node. NE#tgere are any queued
messages with permanent changes in vascular network semadigr node, the slave
node applies these changes and continues to perform itsniegnéasks.

The master node manages the perfusion process. It is réisigofts gathering
messages coming from the slave nodes and making decisions tie permanent
perfusions. When it receives a message with optimal bifimegparameters of one
of the new MFUs, it has to check if this MFU can be connectedht® durrent
vascular network. A rejection is possible because vasadaworks at individuals
nodes (both at computational ones and managing one) caigbtystlifferent (trees’
nonuniformity) as a result of communication latency andeppehdent work of slave
nodes. Therefore, the master processor tries to find in gswature the vessels
related with the proposed optimal bifurcation. If the psm cannot find at least
one of these vessels, then the MFU is rejected. But in the ots®e, the new MFU
is permanently connected to the vascular network and adroofpanges related with
the new tissue element are broadcasted to the slave progesso

However, we found that the efficiency of this algorithm caordase in the case
of a huge number of vessels (i.e. tens of thousands). Themrdagelated to the
periodical broadcasting of the whole organ. We minimizegrttessage size and only
the parameters that cannot be reconstructed by slave naglssrd. Moreover, many
initial parameters are read from input files. As a result,tilme to send the packed
messages is insignificant. But, unfortunately, it turnetl tbat the time needed to
reconstruct vascular trees from the received packed mesdagslave processors
can be responsible for slowing down the algorithm.
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Therefore, we also proposed an improved parallel algorith@}. Its general
diagram is presented in Fig. 3. Each node during the wholelaiion has its own
copy of vascular trees and tissue. Thus, only at the begjnrtiee master node
broadcasts the whole initial organ to ensure that all theesagubssess the same
starting information. Each new subcycle starts with theusatjal mitosis. Next,
the perfusion process is carried out in parallel. Slave satempt to find optimal
bifurcations points, while the master node is responsiterfanaging the process of
permanent perfusion and broadcasting changes.

trees and tissue

broadcasting

[new subcycle]

[adult organ]

new cycle
[parallel shape growthw

[sequential mitosis ]—»[ parallel perfusion ]—»[sequential necrosis]—»[ parallel retraction ]

Fig. 3. The outline of the improved parallel algorithm of vasculaowth. Only at the beginning, the
trees and tissue broadcasting is performed. Next, the séglmitosis, parallel perfusion, sequential
necrosis and parallel retraction are carried out in turrenTln the case of new cycle, the parallel shape
growth phase comes and algorithm returns to the sequentiasim In the case of new subcycle, the
algorithm returns directly to the sequential mitosis. Tlypathm ends when the organ reaches its adult
form.

After the reproduction process, the degeneration phasen®l At the master
node, the sequential necrosis is performed. Due to givingorgadcasting the
whole organ in each subcycle, all the slave nodes have to foemad about
possible necrosis changes. Therefore, the master nodddasia to all other nodes
information about the MFUs that have to be removed. The erdlgorithm of
retraction is performed at each node simultaneously. Ifsti@pe growth phase is
needed, it is also carried out simultaneously at each nduepé&rformance analysis
showed that the time needed for these parts of the algoritmbe neglected, as it is
very short in comparison to the perfusion time.
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3. Load Balancing Mechanisms in Parallel Algorithm of Vascuar
Network Development

One of the most important issues in parallel computing isl lbalancing. It aims
at roughly equal workload arrangement across processdrgnarimization of their
idle time. Such an arrangement typically improves the parémce and increases
the efficiency of parallel applications, which reduces tine time of computations.
Obviously, we can also improve the performance by incrgagower of processors
or by delivering more processors. Nevertheless, this esipenvay of achieving the
goal is not often able to increase the efficiency and usubtylsl be used in the cases
in which all processing units are overloaded or there is resipdity of an equal load
distribution.

However, in many studies it has been shown that, even whenatks are
strongly linked with each other and their workloads areltptanpredictable, load
balancing algorithms can be very useful [6]. On the othedhane has to be careful
to avoid that the cost of load balancing exceeds its possigiefits, which would
decrease the overall performance.

In the next part of this section, we propose several loadnoalg mechanisms
in the parallel algorithm of vascular network developméiitstly, the load balancing
mechanisms across slave processors are presented andetlasovdescribe how to
efficiently load a master processor.

3.1 Load Balancing Across Slave Processors

In the proposed parallel algorithms we focus mainly on théugén process as it
is the most time demanding phase of the vascular growth atioal This process
is decomposed into a set of tasks that solve the problem gllglarA single task
consists in finding a fixed number of candidate/nearest isess®l then optimal
bifurcation points for a single MFU. In order to find the nesireessels, the whole
vascular network has to be searched. The time needed tormpetfis operation
can differ for successive MFUs because of changes in vastaka structures: new
branches (i.e. vessel segments) can appear and old onesapapeadr. Thus, itis very
hard to estimate the time of this operation before the woskribution because one
does not know a priori how the vascular system will look aéiach next permanent
perfusion.

Subsequently, for all candidate vessels optimal bifuocagioints are calculated.
This operation is the most time consuming part of the pesfugirocess since it
takes approximately 60-90% of the time needed to this psodesorder to find
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the position of bifurcation that minimizes a local volume lbod the Downhill
Simplex algorithm is used [23], [24]. Again, we do not knownhmuch time this
searching can take because number of steps necessary tditacal minimum
is hard to precise, even in the case of invariable structofdbe vascular system.
Moreover, for different MFUs the number of candidate vestebe processed can be
various since some of these vessels may be rejected duertneighboring vascular
structures preventing the creation of any bifurcation.(&agk of free space in the
neighborhood).

The last stage of searching the optimal bifurcation pomtseé selection of one
of the candidate vessels from each vascular tree in such ahagthe global blood
volume (i.e. for the whole vascular network) is minimal. Mover, the algorithm
detects all possible intersections between the perfusisgels (vessels constituting
the new bifurcation) in the same tree and two different t(eeg between arteries and
veins) and rejects the related candidate vessels. Alsadrc#ise, it is impossible to
predict the number of steps. This phase can end after clgetikinfirst combination
of candidate vessels as well as after checking the last one.

To sum up the above general description of operations thet ttabe done in
each task, we can state that the work required to find the aptifurcation points
can vary for different MFUs. Moreover, it is impossible topapximate the time
needed to perform each task before the work distribution el a8 immediately
before its execution. Thus, it is very hard to find any aldonitable to precisely
decide when, where and how much work has to be assigned. itioaddve have to
deal with the small grain parallelism (in one subcycle, tamber of tasks can come
to several thousands) and use of any sophisticated (i.epuwationally extensive)
load balance algorithm can introduce an overhead that mageexpossible benefits.
Therefore, we decided to propose a mechanism that is basthe dasic centralized
dynamic load balance algorithm [5].

After the sequential mitosis, the master node holds thecintin of tasks, i.e.
new MFUs to perfuse. At the beginning, a fixed part of theskstasspread between
processors (part A in Fig. 4 - 1st load balancing mechani&ag¢h slave processor
receives approximately the same number of jobs. The masieegsor keeps the rest
of new MFUs that will be assigned to slave nodes only on dem¥#ffien a slave
node finishes its jobs, it sends a request to the master naddento get more work
(unbalance load detection). If the master node still has BlteLbe checked, it sends
part of these MFUs to the under-loaded node (operation 5Bomr Fig. 4 - 1st load
balancing mechanism). The number of MFUs to send is cakuilatcording to the
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following formula:

number of the remaining MFUs
number of processors

(4)

This mechanism detects unbalance load dynamically andfenantasks to idle
processors. The decision on how many new MFUs are distddoienediately after
the mitosis is made once at the beginning of the simulatidve Jreat advantage of
this mechanism is that it is simple for the master node to kmdwen to terminate.
In our case, the perfusion process ends when: the task geieugpty, all permanent
perfusions are broadcasted across slaves nodes and alhsides have finished their
jobs.

When a slave node finishes a single task, it sends the pamnuteptimal
bifurcation points to the master node (operation 2, part Bigq 4). Next, if there
are any queued messages with permanent vascular tree shanogelcasted by the
master node, the slave node applies these changes anduesntm perform its
remaining tasks. Such a solution decreases idle time o slades because they can
perform calculations without any break to wait for a resgofiem the master node.
On the other hand, due to continuous work of slave nodesafiteout waiting for a
response whether the proposed optimal bifurcation poartsbe used for permanent
perfusion) the trees’ nonuniformity can increase. If tiee#’ nonuniformity increases
then the possibility of MFU rejection by the master node aises, which can
cause that the time of simulation is longer. As a result, @eto#f between these two
approaches has to be found. We decided that if the numbengfwational nodes is
quite small, the nodes work continuously. Otherwise, theesdry to minimize the
trees’ nonuniformity and wait for a response (part B in Fig.2hd load balancing
mechanism).

Another crucial point in the algorithm is sending/broadices permanent
vascular changes by the master node (operation 3, part Bgirdli If one wants
to minimize the time of communication between nodes, thenhbst solution is
to send a set of changes (not a single change each time thathainge appears).
However, such an approach can increase the trees’ nonumitijyoiThus, we made a
decision to synchronize this mechanism with the mechaniesoribed above. When
computational nodes work continuously between succeddivels (non-blocking
receive of changes) then the changes are collected by themmasle and sent as a
set of changes (part B in Fig. 4 - 3rd load balancing mechgni&m the other hand,
when the computational nodes wait for a response after eddll (dfter each task)
then the master node broadcasts changes as quick as p@ssiblden they appear).
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Fig. 4.Load balancing mechanisms in the parallel algorithm of wsagrowth. The first load balancing
mechanism is related with spreading only a fixed part of newUslIand sending the remaining
MFUs on demand. The second and third load balancing mechargiee responsible for an appropriate
organization of sending and receiving permanent vaschimges. The fourth one enables us to start the
perfusion process even before the end of mitosis procesdifithone tries to efficiently load the master
processor in the case of a small number of slave nodes. Pashéems the work distribution before
the perfusion process, while part B illustrates the peoiugirocess during which slave nodes search
optimal bifurcations and the master node manages permaegsions and broadcasts changes.
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The next load balancing mechanism that we want to bring ic@ors the mitosis
process (see Fig. 4 - 4th load balancing mechanism). Wheanalséer node performs
the algorithm of new MFU creation all slave nodes are idleeréfore, we introduced
the possibility that some MFUs can be spread even beforenteokthe mitosis
process. In this case, slave nodes can start their work ejuick

3.2 Efficient Load of Master Processor

In the standard centralized dynamic load balancing algoritl], the master proces-
sor is responsible only for the managing of task distributidowever, in order to
provide still more efficient solution, in the presented aildon, the master processor
can also perform calculations related to finding parameitoptimal bifurcations,
i.e. the same as slave processors (see Fig. 4 - 5th load glamechanism).
This mechanism can be particulary useful in the case of alsmaiber of slave
nodes since the master node can also have time to do adtlitenalations besides
managing the perfusion process.

4. Experimental Validation

This section contains an experimental verification of theppsed load balancing
mechanisms. The presented results were obtained in mamyiments. We tested
the behavior of the vascular model starting from small siaefigurations (about
1000 MFUs) and ending with large size configurations (ab@@09 MFUs and
consequently about 300000 vessel segments). In Fig. 5 aliation of one of the
obtained vascular network of a liver is presented. Typidsisplogical parameters
of the hepatic vascular network were used [12]. At the bagmnthe efficiency of
proposed load balancing mechanisms is evaluated usingpterlsp and next the
detailed results of the particular mechanisms are predente

In the experiments a cluster of sixteen SMP servers runningx.2.6 and
connected by an Infiniband network was used. Each server quagped with two
64-bit Xeon 3.2GHz CPUs with 2MB L2 cache, 2GB of RAM and anritfand
10GB/s HCA connected to a PCI-Express port. We used the MEAPVersion
0.9.5 [25] as the MPI standard implementation [17]. Morepwee carried out the
experiments on a similar cluster of sixteen SMP serversdxh server was equipped
with eight processing units and the MVAPICH version 1.0rBofder to execute the
performance analysis we used the Multi-Processing Erwisori (MPE) library with
the graphical visualization tool Jumpshot-4 [17] and Tgnamd Analysis Utilities
(TAU) Performance System [26].
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Fig. 5. Visualization of an adult liver (about 49000 MFUs and 3000€8sels): a) hepatic veins with a
tumor shape, b) hepatic arteries with a tumor shape, c) nmepatlt arteries, portal veins and hepatic
veins with liver and tumor shapes.
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Fig. 6. Mean speedups of the parallel algorithm with and withoutllbalancing mechanisms from
experiments for different vascular network size (from salthousands to several hundreds thousands
of vessel segments).

In Fig. 6 one can see the obtained average speedups of higsrivith and
without load balancing mechanisms. It is clearly visiblattthe solution with load
balancing mechanisms is from 20% to 25% quicker than theisaluvithout this
mechanisms. As a result, the simulation time on sixteen Ciidsled to receive
the adult organ consisting of about 50000 MFUs and 300008evesegments equals
approximately 2 hours with load balancing, instead of 3 hevithout load balancing
or 23 hours on a single processor machine (64-bit Xeon 3.2@thz2MB L2 cache,
2GB of RAM).

The following figures present in more detailed the influendethe load
balancing algorithms. The mean time results from the sitimlaon eight CPUs
(seven slave processors and one master processor) withdaey vascular network
(about 48000 MFUs) are shown in Fig. 7a . One can see the iiflerwnication
time for particular slave processors with and without loathbcing mechanisms.
It is clearly visible that without load balancing mechanisthe processors waste
more time for waiting and communication, which can be caumed higher number
of rejected MFUs by the master processor and consequerglyebessity to test
more new MFUs. Moreover, particular slave processors agganly loaded. On the
other hand, we observe that with load balancing mechanismslave nodes waste
approximately the same amount of time (i.e. are evenly ldade addition, the total
idle time is shorter.
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Fig. 7b presents the mean idle+communication and calouldimes obtained
in experiments with large size vascular network (about @8@6Us) for a different
number of processors without and with load balancing (LBrma@isms. We can
see that each time when the load balancing mechanisms atebatie calculation
and idle+communication times are shorter. The idle+comoation time is shorter
mainly because of keeping by the master node the fixed pa/wefviFUs that are
sent on demand to under-loaded processors. While, thelatidrutime is shorter
as a result of an appropriate organization of sending areiwiag changes, which
decreases the trees’ nonuniformity. Based on many expetanee suggest that if
the number of processors is smaller than eight, the slaveepsors should work
continuously between successive MFUs and the master ndlgetsochanges and
sends them in groups. Otherwise, the slave processorsavaitresponse after each
MFU and the master node broadcasts changes as quick aslpo§dibiously, the
found limit is suitable for the used clusters and may varyottver hardware.

Moreover, we thoroughly investigated the load balancinglmaism consisting
in keeping by the master node a fixed part of new MFUs which ané en demand
to under-loaded processors (see Fig. 8a). From one poimtwf we can see that it is
very hard to choose one common value (number of MFUSs) thasdive best gain in
time for a different number of processors. On the other hanglyisible that values
higher than 90% can increase the simulation time. Finallysuggest that any value
within the range from 30% to 70% is acceptable.

Furthermore, we tested in which cases it is worth to invoheerhaster processor
also in calculations connected with finding optimal bifurgas points (see Fig. 8b).
It is clearly visible that in the case of small number of pssms (i.e. smaller than
four) if the master node, besides managing, performs the sahulations as slave
processors the simulation time can be reduced. On the o#imel, he. the number of
processor is bigger than three, we should not arrange arityaadd job to the master
node.

5. Conclusion and Future Works

In this paper we propose several mechanisms with the ainmaac@aworkload across
processors and to reduce the communication overhead inattadlgd algorithm of
vascular network development. We consider a master-slaxdelrin which tasks
appear at the central scheduler (master processor) andstibuted between slave
processors. Thus, the core mechanism is based on the turalynamic load
balancing algorithm that detects an unbalance load dyraiypiand tries to send
more job to under-loaded processors. Moreover, we invastidpe influence of trees’
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nonuniformity between particular calculation nodes aneshaging node on simula-
tion time. In consequence, we found the tradeoff betweemuamnication overhead
and processors’ idle time. The proposed mechanisms wereutaly validated in
many experiments. The results have shown that the intradimprovements are
able to further accelerate the process of vascular growrthlation. As a result, the
simulation time even when we introduce more physiologicgtails to the model
or increase the number of MFUs can be done still in a reasenadyliod of time.
In addition, it is easier to perform multiple experimentsoialer to calibrate model
parameters.

In the future, we plan to pay more attention to parallel cotimguin shared-
memory environments. We want to implement the vascular tirgmwocess in the
framework of multi-platform shared-memory parallel pragyming (OpenMP) using
a fine-grained parallelism. Moreover, our goal is to develaphybrid solution able
to take advantage of machines with both shared and diggdbmemory architectures
(MPI1+OpenMP implementation).
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MECHANIZM ZROWNOWA ZENIA OBCIA ZENIA
W ROWNOLEGLEJ IMPLEMENTACJI ROZWOJU
SIECI NACZY N KRWIONO SNYCH

Streszczenie W artykule rozwaane sa mechanizmy zréwnaregace obcizenie w réwno-
leglym algorytmie rozwoju sieci nacaykrwiongsnych. Gléwna uwage zwr6cono na proces
perfuzji (podtaczanie nowych komérek do drzew krwisngch) jakoze proces ten jest naj-
bardziej czasochtonnym fragmentem rozpatrywanego algaryZaproponowane przez au-
toréw rozwiazania maja na celu zrébwnareaie obciaenia pomiedzy procesorami, skro-
cenie ich czasu bezczynsm oraz zredukowanie narzutu komunikacyjnego. Jadrwieez
zania jest oparte na scentralizowanym dynamicznym goidejéwnowaenia obciaenia.
Zachowania modelu zostaty przeanalizowane i kompromisi@dzy ré&nymi technikami
zostat zaproponowany. Przedstawione mechanizmy zosaédyprementowane na klastrze
obliczeniowym przy wykorzystaniu standardu MPI. Otrzymamzultaty jednoznacznie
pokazuja ¥ wprowadzone usprawnienia zapewniaja bardziej efekiéyworwiazanie co
w konsekwencji pozwala na jeszcze wieksze ppgszenie procesu symulaciji.

Stowa kluczowe: algorytmy réwnolegte, mechanizmy réwnaremia obcigenia, klastry

obliczeniowe, modelowanie komputerowe, system krwémyo

Artykut zrealizowano w ramach pracy badawczej W/WI/3/2010
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