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Abstract: In this paper, load balancing mechanisms in a parallel algorithm of vascular
network development are investigated. The main attention is focused on the perfusion
process (connection of new cells to vascular trees) as it is the most time demanding part
of the vascular algorithm. We propose several techniques that aim at balancing load among
processors, decreasing their idle time and reducing the communication overhead. The core
solution is based on the centralized dynamic load balancingapproach. The model behaviors
are analyzed and a tradeoff between the different mechanisms is found. The proposed
mechanisms are implemented on a computing cluster with the use of the message passing
interface (MPI) standard. The experimental results show that the introduced improvements
provide a more efficient solution and consequently further accelerate the simulation process.
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1. Introduction

The last decade has seen a revolution in high performance scientific computing [1].
This is mainly due to a tremendous development of parallel computers. Because
of physical and economic limitations of processor frequency scaling (e.g. power
consumption and consequently heat generation) both industry and science prefer
to use many moderately fast processors, rather than a singlehigh speed processing
unit. Nowadays, computing clusters and multi-core/multi-processor computers are
becoming widespread platforms [2]. As a results, many scientists have gained an
easy access to parallel machines able to support an ever-rising demand for high-speed
processing.
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In this paper, we focus on applying parallel computing to modeling and
simulation in biomedical research on vascular networks. Vascular networks play
a very important role in the detection process of various pathological anomalies
since changes in their structure and function can be directly caused by diseases [3].
Moreover, when a contrast agent is administrated, these anatomical or functional
modifications can appear in medical images. Therefore, the modeling of vascular
systems can help to understand the mechanisms of dynamic image formation and
support the development of methods to detect early disease indicators.

Nevertheless, one of the most important and simultaneouslythe most difficult
challenges in model designing is to choose the level of details to include in the
model [4]. A high quality vascular model has to take into account the most essential
physiological and anatomical properties and to disregard those elements whose
role is insignificant. Such a model should also be effective in practical cases, i.e.
computational simulations must be performed in a reasonable time. Therefore, it
seems to be very useful and desirable to take advantage of parallel computing in
modeling of living organisms and particulary in the case of the vascular system
modeling. Firstly, we are able to provide a significant increase in computational
performance by splitting problem into parts that are performed by separate processors
in parallel [5]. Secondly, using multiple processing unitsoften allows us to provide
a more precise solution or to solve a larger problem in a reasonable amount of
time. Moreover, parallel computers are very useful when thesame problem has to
be evaluated multiple times, with different parameters forinstance.

In parallel systems, computations are decomposed into tasks. In order to achieve
an efficient solution, overheads of the parallel tasks have to be minimized [6]. One
ought to strive to reduce the total amount of time some processors are idle while the
others are still busy. Secondly, the amount of time spent forcommunication between
processors has to be also minimized. These two objectives are often in conflict with
each other, therefore one should find an optimal tradeoff between them and propose
load balancing mechanisms able to spread the tasks evenly across the processors.

Load balancing techniques used in parallel algorithms can be broadly classified
into two major categories: static and dynamic. In the formertype, usually referred
to as the mapping problem [7] or scheduling problem, tasks are distributed among
processors before the execution of the algorithm based on a priori knowledge.
Several techniques for static load balancing have been developed, e.g. round robin
algorithm [1], simulated annealing (stochastic optimization algorithm) [8], [9] or
real-coded genetic algorithms [10]. However, there existsa large class of applications
that workloads of tasks are uneven and unpredictable and maychange during the
computation. Therefore, for these applications we are not able to spread the tasks
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evenly across processors beforehand. In this case, dynamicload balancing (DLB)
schemes are needed. In DLB, the decision on task arrangementis made during
the execution of the program based on the current load status. Moreover, such an
approach can be more appropriate in the case of heterogeneous parallel machines
with additional sources of an external load. Due to a big and fast growing number of
different dynamic load balancing techniques, we refer the reader to [11] for a detailed
survey of DLB algorithms.

In our previous studies, we developed a two-level physiological model of vascu-
larization [12], [13]. It consists of a macroscopic model able to simulate growth and
pathological structural modifications of vascular network, and a microvascular model
responsible for simulation of blood and contrast agent transport through capillary
walls [14]. Initially, we made use of a sequential algorithmof vascular development
to obtain the structure of the vascular network. The vascular development results from
a progressive increasing number of cells and consequently aprogressive increasing
number of vessels that support blood supply for these cells.Subsequently, we
introduced the basic [15] and improved [16] parallel solutions of vascular growth
algorithm. These two parallel solutions were implemented on a computing cluster
with the use of the message passing interface (MPI) standard[17].

In this paper, we propose mechanisms that try to achieve balanced load among
processors and reduce the communication overhead in the parallel modeling of the
vascular network growth. Both static and dynamic algorithms are used. We consider
a centralized model, in which tasks are generated at the central scheduler (master
processor) and are allocated to slave processors. Workloads of the tasks are uneven
and it is impossible to estimate their execution times because each particular job has
an indeterminate number of steps to reach its solution. In addition, we have to deal
with a dynamically changing structure of vascular trees. Weanalyze various model
behaviors in a parallel environment and propose a tradeoff between the different load
balancing strategies in order to provide a more efficient solution and consequently to
further accelerate the simulation process.

The rest of the paper is organized as follows. In the next section, the vascular
model is described and sequential and both parallel algorithms of vascular network
development are recalled. In section 3 the load balancing mechanisms are presented.
An experimental validation of the proposed mechanisms is performed in section 4.
The last section contains the conclusion and future works.
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2. Model Description

In the macroscopic part of the model we can distinguish two main elements: the
tissue and the vascular network. The tissue is represented by a set of Macroscopic
Functional Units (MFU) that are regularly (but randomly) distributed inside the
specified, three-dimensional organ shape. The vascular network is composed of
vessels supplying the MFUs. The microvascular part of the model is hidden in MFUs
and is responsible for the propagation of an MRI contrast agents in the tissue. The
five-compartments [18] and axially distributed Blood Tissue EXchange (BTEX) [14]
contrast propagation approaches were proposed.

The most important and original part of the work presented here concerns
the algorithms of vascular development on macroscopic level. Therefore, in the
next part of this section, the macroscopic part of the model is described in more
details followed by the presentation of sequential and parallel algorithms of vascular
development.

2.1 Macroscopic model

Tissue modeling A MFU is a small, fixed size part of tissue to which a class is
assigned that determines most of functional/structural (rhythm of mistosis/necrosis)
and physiological features (e.g. blood flow rate, blood pressure). Several classes of
MFUs can be defined to differentiate functional or pathological regions of tissue (e.g.
tumoral, normal). Moreover, the MFU class can be changed over time, which makes
it possible to simulate the evolution of a disease (e.g. fromHepatoCellular Carcinoma
to necrotic tissue or from benign nodule to malignant tumor). In order to introduce
more natural variability, certain parameters (such as blood flow rate) are described by
defined distributions.

Vascular Network Modeling Most of model features are not linked with any
specific organ. However, it is very hard to model a vascular network without any kind
of specialization. In our work, the model expresses the specificity of the liver. The
liver plays a major role in the metabolism and has a number of functions in the body
including protein synthesis, detoxification, glycogen storage, etc. [19]. Moreover, it
stands out from other vital organs by its unique organization of vascular network that
consists of three vessel trees. Hepatic arteries and portalveins deliver blood to cells,
whereas, the hepatic venous tree is responsible for blood transport back to the heart.

In the model, each vascular tree is composed of vessels that can divide creating
bifurcations (see Fig. 1a). A vessel segment (part of vesselbetween two consecutive
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bifurcations) is represented by an ideal, rigid tube with fixed radius, wall thickness,
length and position. The geometry of capillaries is not considered in the model.
These smallest vessels are hidden in the MFUs (microvascular model). According
to the morphometrical investigation dealing with bigger vessels, e.g. conducted by
Zamir [20], it is assumed that a single vascular structure has a form of a binary tree.
In effect, anastomoses (e.g. mutual vessel intersections)that may occur particulary
in pathological situations or among vessels with very smallradii are not taken into
account.
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daughter vessels 

successive 

bifurcations

new MFU

three new vessels

sprouting out from candidate vessels

hepatic

arteries

portal

veins

hepatic
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Fig. 1. Part of binary vascular trees: a) mother vessel and its two daughter vessels connected by a
bifurcation, b) new MFU perfusion by three new vessels sprouting out from candidate vessels each
from different vascular tree.

In the model, the blood is treated as a Newtonian fluid that is transferred from
hepatic arteries and portal veins to the hepatic veins through MFUs. Its flow is
modeled as a non-turbulent streamline flow in parallel layers (laminar flow) and
governed by Poiseuille’s law:

∆P = Q
8µl
πr4 , (1)

wherel is the vessel length,r is its radius,Q is the blood flow and∆P is the pressure
difference between the two vessel extremities. Moreover, at each bifurcation the law
of matter conservation has to be observed:

Q = Qr +Ql . (2)

It says that the quantities of blood entering a bifurcation (blood flow in parent vessel
Q) and leaving the bifurcation (blood flows in the right and left daughter branches
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Qr + Ql ) are equal. Another constraint deals with the decreasing vessel radii in the
vascular trees when we move from proximal to distal segmentsof vascular network,
creating/describing the relation between the mother vessel radius (r) and the radii of
its two daughters (rightrr and leftr l ):

rγ
= rγ

r + rγ
l , (3)

whereγ varies between 2 and 3 [21].

2.2 Sequential Vascular Network Growth Algorithm

An adult organ is obtained in a vascular development processthat is modeled as
a analogy to a hyperplasia process (progressive increasingnumber of cells [22]).
The simulation starts with an organ whose size is a fraction of a mature one.
After parameters’ initialization, in discrete time moments (called cycles), the organ
enlarges its size (growth phases). The relative positions of MFUs remain unchanged
but distances between them are increased, leading to appearance of empty spaces.
Subsequently, these spaces are filled by new MFUs in consecutive subcycles. In
each subcycle, each MFU can divide and give birth to a new MFU of the same
class (mitosis process) or die (necrosis process). Probabilities of mitosis and necrosis
are sensitive to the time and they decrease exponentially with the age of the MFU.
New cycle starts only when the current organ shape is totallyfilled by MFUs. The
increasing number of MFUs induces the development of a vascular network which is
responsible for the blood delivery.

New MFUs that appear during the mitosis process are initially ischemic, i.e.
they are not perfused by the existing vascular network. Therefore, for each new
macroscopic functional unit a fixed number of the nearest/candidate vessels is found.
Then, each candidate vessel temporarily creates a bifurcation perfusing the MFU
(one vessel is replaced by three vessels connected by a bifurcation point). The spatial
position of the bifurcation is controlled by local minimization of the additional blood
volume necessary to the MFU perfusion (Downhill Simplex algorithm [23]).

The above process can be regarded as a kind of competition because only
one vessel in each tree can be finally designated to permanently perfuse the
new macroscopic functional unit. Additionally, the problem of avoiding possible
collisions between perfusing vessels is taken into account. The algorithms detects
intersections between vessels coming from the same tree or from two different
trees and rejects the related candidate vessels. Finally, from among the remaining
candidate vessels, the combination (a single combination consists on one vessel from
each tree) with the lowest sum of volumes is chosen to permanently perfuse the MFU
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(see Fig. 1b). Afterwards, a recalculation of vessels’ characteristics (i.e. pressure,
radius etc.) in the vascular trees is performed. This step ensures the consistency of
the characteristics according to the assumed physical and physiological laws.

After the reproduction process (i.e. mitosis and perfusionprocesses), comes
the degeneration phase. At this step of the algorithm, few MFUs can die (necrosis
process) and then all the vessels supplying these MFUs retract and disappear
(retraction process). Next, the algorithm goes back to the reproduction process.

2.3 Parallel Vascular Network Growth Algorithm

In the presented sequential algorithm of vascular growth, all MFUs are connected
to the vascular network one by one. Each MFU perfusion involves the necessity of
creating and testing a number of temporary bifurcations. Itrequires a great number
of calculations to face the imposed constraints to assure the consistency of vascular
trees. A vascular tree is consistent if: i) it has the same blood pressure and fixed blood
flow in all terminal vessels attached to MFUs and ii) the Poiseuille’s law in each its
vessel and the matter conservation and bifurcation laws in each its bifurcation are
fulfilled. As a result, the perfusion process is the time dominant operation in the
organ growth simulation. Profiling results (e.g. executiontimes of specific methods)
showed us that it can generally consume around 70-90% of the total CPU time needed
to develop an adult organ. Therefore, in order to acceleratethe simulation process we
proposed two parallel vascular growth algorithms [15], [16] that spread the most time
consuming computations between processors and consequently are able to decrease
the simulation time. Moreover, these implementations in a parallel environment can
bring the model closer to reality where perfusion processesare inherently parallel.

The two previously proposed parallel algorithms are based on message passing
paradigm [17] and therefore are perfectly suited for distributed memory architectures.
Both algorithms use the master-slave model [5], it means that master/managing pro-
cessor/node generates tasks and distributes them among slave/calculating processors.

The general scheme of the first algorithm [15] is presented inFig. 2. It
parallelizes the perfusion process. The remaining processes (i.e. necrosis, retraction
and shape growth) are performed sequentially at the master node. In that case, before
each perfusion phase, slave nodes do not possess the most current vascular system
and tissue. Thus, at the beginning of each subcycle the master node has to broadcast
the latest MFUs and vascular trees. Subsequently, after thesequential mitosis, the
parallel perfusion is carried out. In comparison to its sequential version, here the
managing node does not make any attempt to find candidate vessels and bifurcation
points but instead it spreads these tasks over calculating nodes.
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trees and tissue

[new cycle/subcycle] [adult organ]

remaining processes

broadcasting

sequential mitosis parallel perfusion

Fig. 2. The outline of the first parallel algorithm of vascular growth. At the beginning of each
cycle/subcycle, the trees and tissue broadcasting is performed. Next, the sequential mitosis, parallel
perfusion and remaining vascular processes (e.g. necrosis, retraction) are carried out in turn. The
algorithm ends when the organ reaches its adult form.

When a computational node receives the message with severalMFUs, it attempts
to find the closest vessels and finally the optimal bifurcation points to perfuse these
new tissue elements. Each time, when the search ends with success, the parameters
of the optimal bifurcation are sent to the master node. Next,if there are any queued
messages with permanent changes in vascular network sent bymaster node, the slave
node applies these changes and continues to perform its remaining tasks.

The master node manages the perfusion process. It is responsible for gathering
messages coming from the slave nodes and making decisions about the permanent
perfusions. When it receives a message with optimal bifurcation parameters of one
of the new MFUs, it has to check if this MFU can be connected to the current
vascular network. A rejection is possible because vascularnetworks at individuals
nodes (both at computational ones and managing one) can be slightly different (trees’
nonuniformity) as a result of communication latency and independent work of slave
nodes. Therefore, the master processor tries to find in its vasculature the vessels
related with the proposed optimal bifurcation. If the processor cannot find at least
one of these vessels, then the MFU is rejected. But in the other case, the new MFU
is permanently connected to the vascular network and all organ changes related with
the new tissue element are broadcasted to the slave processors.

However, we found that the efficiency of this algorithm can decrease in the case
of a huge number of vessels (i.e. tens of thousands). The reason is related to the
periodical broadcasting of the whole organ. We minimized the message size and only
the parameters that cannot be reconstructed by slave nodes are sent. Moreover, many
initial parameters are read from input files. As a result, thetime to send the packed
messages is insignificant. But, unfortunately, it turned out that the time needed to
reconstruct vascular trees from the received packed messages by slave processors
can be responsible for slowing down the algorithm.
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Therefore, we also proposed an improved parallel algorithm[16]. Its general
diagram is presented in Fig. 3. Each node during the whole simulation has its own
copy of vascular trees and tissue. Thus, only at the beginning, the master node
broadcasts the whole initial organ to ensure that all the nodes possess the same
starting information. Each new subcycle starts with the sequential mitosis. Next,
the perfusion process is carried out in parallel. Slave nodes attempt to find optimal
bifurcations points, while the master node is responsible for managing the process of
permanent perfusion and broadcasting changes.

trees and tissue

[new cycle]

[adult organ]

broadcasting

sequential mitosis parallel perfusion sequential necrosis parallel retraction

parallel shape growth

[new subcycle]

Fig. 3. The outline of the improved parallel algorithm of vascular growth. Only at the beginning, the
trees and tissue broadcasting is performed. Next, the sequential mitosis, parallel perfusion, sequential
necrosis and parallel retraction are carried out in turn. Then, in the case of new cycle, the parallel shape
growth phase comes and algorithm returns to the sequential mitosis. In the case of new subcycle, the
algorithm returns directly to the sequential mitosis. The algorithm ends when the organ reaches its adult
form.

After the reproduction process, the degeneration phase follows. At the master
node, the sequential necrosis is performed. Due to giving upbroadcasting the
whole organ in each subcycle, all the slave nodes have to be informed about
possible necrosis changes. Therefore, the master node broadcasts to all other nodes
information about the MFUs that have to be removed. The entire algorithm of
retraction is performed at each node simultaneously. If theshape growth phase is
needed, it is also carried out simultaneously at each node. The performance analysis
showed that the time needed for these parts of the algorithm can be neglected, as it is
very short in comparison to the perfusion time.

49
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3. Load Balancing Mechanisms in Parallel Algorithm of Vascular
Network Development

One of the most important issues in parallel computing is load balancing. It aims
at roughly equal workload arrangement across processors and minimization of their
idle time. Such an arrangement typically improves the performance and increases
the efficiency of parallel applications, which reduces the run time of computations.
Obviously, we can also improve the performance by increasing power of processors
or by delivering more processors. Nevertheless, this expensive way of achieving the
goal is not often able to increase the efficiency and usually should be used in the cases
in which all processing units are overloaded or there is no possibility of an equal load
distribution.

However, in many studies it has been shown that, even when thetasks are
strongly linked with each other and their workloads are totally unpredictable, load
balancing algorithms can be very useful [6]. On the other hand, one has to be careful
to avoid that the cost of load balancing exceeds its possiblebenefits, which would
decrease the overall performance.

In the next part of this section, we propose several load balancing mechanisms
in the parallel algorithm of vascular network development.Firstly, the load balancing
mechanisms across slave processors are presented and then we also describe how to
efficiently load a master processor.

3.1 Load Balancing Across Slave Processors

In the proposed parallel algorithms we focus mainly on the perfusion process as it
is the most time demanding phase of the vascular growth simulation. This process
is decomposed into a set of tasks that solve the problem in parallel. A single task
consists in finding a fixed number of candidate/nearest vessels and then optimal
bifurcation points for a single MFU. In order to find the nearest vessels, the whole
vascular network has to be searched. The time needed to perform this operation
can differ for successive MFUs because of changes in vascular tree structures: new
branches (i.e. vessel segments) can appear and old ones can disappear. Thus, it is very
hard to estimate the time of this operation before the work distribution because one
does not know a priori how the vascular system will look aftereach next permanent
perfusion.

Subsequently, for all candidate vessels optimal bifurcation points are calculated.
This operation is the most time consuming part of the perfusion process since it
takes approximately 60-90% of the time needed to this process. In order to find
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the position of bifurcation that minimizes a local volume ofblood the Downhill
Simplex algorithm is used [23], [24]. Again, we do not know how much time this
searching can take because number of steps necessary to find the local minimum
is hard to precise, even in the case of invariable structuresof the vascular system.
Moreover, for different MFUs the number of candidate vessels to be processed can be
various since some of these vessels may be rejected due to their neighboring vascular
structures preventing the creation of any bifurcation (e.g. lack of free space in the
neighborhood).

The last stage of searching the optimal bifurcation points is the selection of one
of the candidate vessels from each vascular tree in such a waythat the global blood
volume (i.e. for the whole vascular network) is minimal. Moreover, the algorithm
detects all possible intersections between the perfusing vessels (vessels constituting
the new bifurcation) in the same tree and two different trees(e.g. between arteries and
veins) and rejects the related candidate vessels. Also in this case, it is impossible to
predict the number of steps. This phase can end after checking the first combination
of candidate vessels as well as after checking the last one.

To sum up the above general description of operations that have to be done in
each task, we can state that the work required to find the optimal bifurcation points
can vary for different MFUs. Moreover, it is impossible to approximate the time
needed to perform each task before the work distribution as well as immediately
before its execution. Thus, it is very hard to find any algorithm able to precisely
decide when, where and how much work has to be assigned. In addition, we have to
deal with the small grain parallelism (in one subcycle, the number of tasks can come
to several thousands) and use of any sophisticated (i.e. computationally extensive)
load balance algorithm can introduce an overhead that may exceed possible benefits.
Therefore, we decided to propose a mechanism that is based onthe basic centralized
dynamic load balance algorithm [5].

After the sequential mitosis, the master node holds the collection of tasks, i.e.
new MFUs to perfuse. At the beginning, a fixed part of these tasks is spread between
processors (part A in Fig. 4 - 1st load balancing mechanism).Each slave processor
receives approximately the same number of jobs. The master processor keeps the rest
of new MFUs that will be assigned to slave nodes only on demand. When a slave
node finishes its jobs, it sends a request to the master node inorder to get more work
(unbalance load detection). If the master node still has MFUs to be checked, it sends
part of these MFUs to the under-loaded node (operation 5, part B in Fig. 4 - 1st load
balancing mechanism). The number of MFUs to send is calculated according to the
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following formula:

number_o f_the_remaining_MFUs
number_o f_processors

+1 . (4)

This mechanism detects unbalance load dynamically and transfers tasks to idle
processors. The decision on how many new MFUs are distributed immediately after
the mitosis is made once at the beginning of the simulation. The great advantage of
this mechanism is that it is simple for the master node to knowwhen to terminate.
In our case, the perfusion process ends when: the task queue is empty, all permanent
perfusions are broadcasted across slaves nodes and all slave nodes have finished their
jobs.

When a slave node finishes a single task, it sends the parameters of optimal
bifurcation points to the master node (operation 2, part B inFig. 4). Next, if there
are any queued messages with permanent vascular tree changes broadcasted by the
master node, the slave node applies these changes and continues to perform its
remaining tasks. Such a solution decreases idle time of slave nodes because they can
perform calculations without any break to wait for a response from the master node.
On the other hand, due to continuous work of slave nodes (i.e.without waiting for a
response whether the proposed optimal bifurcation points can be used for permanent
perfusion) the trees’ nonuniformity can increase. If the trees’ nonuniformity increases
then the possibility of MFU rejection by the master node alsorises, which can
cause that the time of simulation is longer. As a result, a tradeoff between these two
approaches has to be found. We decided that if the number of computational nodes is
quite small, the nodes work continuously. Otherwise, the nodes try to minimize the
trees’ nonuniformity and wait for a response (part B in Fig. 4- 2nd load balancing
mechanism).

Another crucial point in the algorithm is sending/broadcasting permanent
vascular changes by the master node (operation 3, part B in Fig. 4). If one wants
to minimize the time of communication between nodes, then the best solution is
to send a set of changes (not a single change each time that this change appears).
However, such an approach can increase the trees’ nonuniformity. Thus, we made a
decision to synchronize this mechanism with the mechanism described above. When
computational nodes work continuously between successiveMFUs (non-blocking
receive of changes) then the changes are collected by the master node and sent as a
set of changes (part B in Fig. 4 - 3rd load balancing mechanism). On the other hand,
when the computational nodes wait for a response after each MFU (after each task)
then the master node broadcasts changes as quick as possible(i.e. when they appear).
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Fig. 4.Load balancing mechanisms in the parallel algorithm of vascular growth. The first load balancing
mechanism is related with spreading only a fixed part of new MFUs and sending the remaining
MFUs on demand. The second and third load balancing mechanisms are responsible for an appropriate
organization of sending and receiving permanent vascular changes. The fourth one enables us to start the
perfusion process even before the end of mitosis process. The fifth one tries to efficiently load the master
processor in the case of a small number of slave nodes. Part A concerns the work distribution before
the perfusion process, while part B illustrates the perfusion process during which slave nodes search
optimal bifurcations and the master node manages permanentperfusions and broadcasts changes.
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The next load balancing mechanism that we want to bring in concerns the mitosis
process (see Fig. 4 - 4th load balancing mechanism). When themaster node performs
the algorithm of new MFU creation all slave nodes are idle. Therefore, we introduced
the possibility that some MFUs can be spread even before the end of the mitosis
process. In this case, slave nodes can start their work quicker.

3.2 Efficient Load of Master Processor

In the standard centralized dynamic load balancing algorithm [1], the master proces-
sor is responsible only for the managing of task distribution. However, in order to
provide still more efficient solution, in the presented algorithm, the master processor
can also perform calculations related to finding parametersof optimal bifurcations,
i.e. the same as slave processors (see Fig. 4 - 5th load balancing mechanism).
This mechanism can be particulary useful in the case of a small number of slave
nodes since the master node can also have time to do additional calculations besides
managing the perfusion process.

4. Experimental Validation

This section contains an experimental verification of the proposed load balancing
mechanisms. The presented results were obtained in many experiments. We tested
the behavior of the vascular model starting from small size configurations (about
1000 MFUs) and ending with large size configurations (about 50000 MFUs and
consequently about 300000 vessel segments). In Fig. 5 a visualization of one of the
obtained vascular network of a liver is presented. Typical physiological parameters
of the hepatic vascular network were used [12]. At the beginning, the efficiency of
proposed load balancing mechanisms is evaluated using the speedup and next the
detailed results of the particular mechanisms are presented.

In the experiments a cluster of sixteen SMP servers running Linux 2.6 and
connected by an Infiniband network was used. Each server was equipped with two
64-bit Xeon 3.2GHz CPUs with 2MB L2 cache, 2GB of RAM and an Infiniband
10GB/s HCA connected to a PCI-Express port. We used the MVAPICH version
0.9.5 [25] as the MPI standard implementation [17]. Moreover, we carried out the
experiments on a similar cluster of sixteen SMP servers but each server was equipped
with eight processing units and the MVAPICH version 1.0.3. In order to execute the
performance analysis we used the Multi-Processing Environment (MPE) library with
the graphical visualization tool Jumpshot-4 [17] and Tuning and Analysis Utilities
(TAU) Performance System [26].
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a) b)

c)

Fig. 5. Visualization of an adult liver (about 49000 MFUs and 300000vessels): a) hepatic veins with a
tumor shape, b) hepatic arteries with a tumor shape, c) main hepatic arteries, portal veins and hepatic
veins with liver and tumor shapes.
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Fig. 6. Mean speedups of the parallel algorithm with and without load balancing mechanisms from
experiments for different vascular network size (from several thousands to several hundreds thousands
of vessel segments).

In Fig. 6 one can see the obtained average speedups of algorithms with and
without load balancing mechanisms. It is clearly visible that the solution with load
balancing mechanisms is from 20% to 25% quicker than the solution without this
mechanisms. As a result, the simulation time on sixteen CPUsneeded to receive
the adult organ consisting of about 50000 MFUs and 300000 vessel segments equals
approximately 2 hours with load balancing, instead of 3 hours without load balancing
or 23 hours on a single processor machine (64-bit Xeon 3.2GHzwith 2MB L2 cache,
2GB of RAM).

The following figures present in more detailed the influence of the load
balancing algorithms. The mean time results from the simulation on eight CPUs
(seven slave processors and one master processor) with large size vascular network
(about 48000 MFUs) are shown in Fig. 7a . One can see the idle+communication
time for particular slave processors with and without load balancing mechanisms.
It is clearly visible that without load balancing mechanisms the processors waste
more time for waiting and communication, which can be causedby a higher number
of rejected MFUs by the master processor and consequently the necessity to test
more new MFUs. Moreover, particular slave processors are unevenly loaded. On the
other hand, we observe that with load balancing mechanisms the slave nodes waste
approximately the same amount of time (i.e. are evenly loaded). In addition, the total
idle time is shorter.
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Fig. 7b presents the mean idle+communication and calculation times obtained
in experiments with large size vascular network (about 48000 MFUs) for a different
number of processors without and with load balancing (LB) mechanisms. We can
see that each time when the load balancing mechanisms are used both calculation
and idle+communication times are shorter. The idle+communication time is shorter
mainly because of keeping by the master node the fixed part of new MFUs that are
sent on demand to under-loaded processors. While, the calculation time is shorter
as a result of an appropriate organization of sending and receiving changes, which
decreases the trees’ nonuniformity. Based on many experiments, we suggest that if
the number of processors is smaller than eight, the slave processors should work
continuously between successive MFUs and the master node collects changes and
sends them in groups. Otherwise, the slave processors wait for a response after each
MFU and the master node broadcasts changes as quick as possible. Obviously, the
found limit is suitable for the used clusters and may vary forother hardware.

Moreover, we thoroughly investigated the load balancing mechanism consisting
in keeping by the master node a fixed part of new MFUs which are sent on demand
to under-loaded processors (see Fig. 8a). From one point of view, we can see that it is
very hard to choose one common value (number of MFUs) that gives the best gain in
time for a different number of processors. On the other hand,it is visible that values
higher than 90% can increase the simulation time. Finally, we suggest that any value
within the range from 30% to 70% is acceptable.

Furthermore, we tested in which cases it is worth to involve the master processor
also in calculations connected with finding optimal bifurcations points (see Fig. 8b).
It is clearly visible that in the case of small number of processors (i.e. smaller than
four) if the master node, besides managing, performs the same calculations as slave
processors the simulation time can be reduced. On the other hand, i.e. the number of
processor is bigger than three, we should not arrange any additional job to the master
node.

5. Conclusion and Future Works

In this paper we propose several mechanisms with the aim to balance workload across
processors and to reduce the communication overhead in the parallel algorithm of
vascular network development. We consider a master-slave model in which tasks
appear at the central scheduler (master processor) and are distributed between slave
processors. Thus, the core mechanism is based on the centralized dynamic load
balancing algorithm that detects an unbalance load dynamically and tries to send
more job to under-loaded processors. Moreover, we investigate the influence of trees’
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nonuniformity between particular calculation nodes and managing node on simula-
tion time. In consequence, we found the tradeoff between communication overhead
and processors’ idle time. The proposed mechanisms were thoroughly validated in
many experiments. The results have shown that the introduced improvements are
able to further accelerate the process of vascular growth simulation. As a result, the
simulation time even when we introduce more physiological details to the model
or increase the number of MFUs can be done still in a reasonable period of time.
In addition, it is easier to perform multiple experiments inorder to calibrate model
parameters.

In the future, we plan to pay more attention to parallel computing in shared-
memory environments. We want to implement the vascular growth process in the
framework of multi-platform shared-memory parallel programming (OpenMP) using
a fine-grained parallelism. Moreover, our goal is to developan hybrid solution able
to take advantage of machines with both shared and distributed memory architectures
(MPI+OpenMP implementation).
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MECHANIZM ZRÓWNOWA ŻENIA OBCIĄ ŻENIA
W RÓWNOLEGŁEJ IMPLEMENTACJI ROZWOJU

SIECI NACZY Ń KRWIONO ŚNYCH

StreszczenieW artykule rozwȧzane są mechanizmy zrównoważające obcią̇zenie w równo-
ległym algorytmie rozwoju sieci naczyń krwionósnych. Główną uwagę zwrócono na proces
perfuzji (podłączanie nowych komórek do drzew krwionośnych) jako,̇ze proces ten jest naj-
bardziej czasochłonnym fragmentem rozpatrywanego algorytmu. Zaproponowane przez au-
torów rozwiązania mają na celu zrównoważenie obcią̇zenia pomiędzy procesorami, skró-
cenie ich czasu bezczynności oraz zredukowanie narzutu komunikacyjnego. Jądro rozwią-
zania jest oparte na scentralizowanym dynamicznym podejściu równowȧzenia obcią̇zenia.
Zachowania modelu zostały przeanalizowane i kompromis pomiędzy ró̇znymi technikami
został zaproponowany. Przedstawione mechanizmy zostały zaimplementowane na klastrze
obliczeniowym przy wykorzystaniu standardu MPI. Otrzymane rezultaty jednoznacznie
pokazują i̇z wprowadzone usprawnienia zapewniają bardziej efektywne rozwiązanie co
w konsekwencji pozwala na jeszcze większe przyśpieszenie procesu symulacji.

Słowa kluczowe: algorytmy równoległe, mechanizmy równoważenia obcią̇zenia, klastry
obliczeniowe, modelowanie komputerowe, system krwionośny

Artykuł zrealizowano w ramach pracy badawczej W/WI/3/2010.
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