ZESZYTY NAUKOWE POLITECHNIKI BIALOSTOCKIE]J. INFORMATYKA

USER ACTIVITY DETECTION IN COMPUTER
SYSTEMS BY MEANS OF RECURRENCE PLOT
ANALYSIS

Tomasz Rybakl, Romuald Mosdorf!

Faculty of Computer Science, Bialystok University of Technology, Biatystok, Poland

Abstract: As computers are getting faster and disks are growing bigger more data
describing user behaviour can be gathered. These data can be analysed to gain insight into
user behaviour and then to detect user traits. Currently many different methods are used to
analyse data — and there is still no one best method for analysing different parameters of
computer systems. Computer systems behave non-linearly because they run many programs
on multi-user operating systems; this causes inter-program dependencies requiring non-
linear methods to analyse gathered data.

The aim of the article is to present how non-linear methods are able to detect subtle changes
introduced into system by user’s actions. Number of interrupts per second was chosen as
variable describing system’s behaviour. Analysis presented in this article focuses on idle
system and system busy accessing hardware. Article shows that using recurrence plot can
reveal similarities in behaviour of the system running different programs, and therefore can
be used to detect similarities and differences in users behaviour.

This article presents analysis of system activity through usage of series of recurrence plots
to detect changes introduced by user actions. Analysis of lengths of horizontal and vertical
lines on recurrence plots allows for describing periodicity of the system. This allows for
gaining insight into behaviour of entire computing environment. Article shows that different
tasks (such as network transmission, writing or reading from CD-ROM, compressing data)
result in different recurrence plots; at the same time changes introduced by those tasks are
hard to detect without analysis data. This means that usage of recurrence plot is crucial in
detecting changes introduced in system by user’s actions.

Keywords: user behaviour analysis, fractal analysis, recurrence plot

1. Introduction

Computers are typically driven by their users. Even if a computer is running programs
that were not chosen directly by user, this is done to aid user: anti-virus program

Zeszyty Naukowe Politechniki Biatostockiej. Informatyka, vol. 5, pp. 67-85, 2010.

67

Tomasz Rybak, Romuald Mosdorf

protects against harmful software, firewall reduces risk of attacks from the network,
indexing system scans all documents to allow for faster finding interesting phrases
in the files. Programs mentioned above run all the time, so their characteristics can
be treated as background noise while analysing the system’s behaviour. Most of the
characteristics of a running system come from programs that were directly run by the
user. Some users tend to run many programs at the same time and switch between
them; others perform tasks inside one application, close it when job inside this
program is done, and only then start a new program. Some noise can be introduced
by the fact that some programs use other programs — e.g. text processor can call
spreadsheet or graphics program to compute results and generate graphs. Even in
the case of a single user, her behaviour can depend on the mood, eagerness to work,
degree of tiredness, time of day, etc. Therefore, the view of entire system, and change
of it over time, can be used to characterise behaviour of the user.

As noted by Rolia et al. [7], knowing state of system, their capacities, possi-
ble bottlenecks, and current load allows for reconfiguration to avoid unnecessary
overloading of some machines by routing load to other ones. Porter and Katz [5]
are measuring details of behaviour of systems to have roughly the same load on all
servers so none is over- or under-utilised. Matthew Garret [1] notes that to be able to
reduce power consumption, and thus ecological footprint of computers, we need to
know details of behaviour of individual programs and entire system. Most common
ones are: how many operations involving disk are executed in one second (pointing
whether the disk can slow down), how often CPU needs to check state of peripheral
devices (disallowing switching to the lower power consumption modes), and whether
any operations can be grouped together so there are longer gaps between operations
allowing for disabling of some hardware.

Hoffman [2] and Rogers [6] describe monitoring of server farms serving Hotmail
mail and Microsoft pages respectively. They note that to be able to manage large
groups of machines and to be able to detect anomalies one needs to gather details of
their work. On the other hand, no human can cope with such amounts of data so one
needs to use statistics to detect trends and base decisions on those aggregate results.
Hoffman also notes that it is impossible and pointless to try to come with artificial
test cases when managing large groups of machines. Generating large tests requires
large amounts of work and thinking about many different scenarios. To be able to
execute test cases one also needs need fair amount of servers — which would be
used solely for testing and not for usage by users. The biggest disadvantage of using
dedicated testing machines would be inability to come with all of scenarios that users
can generate. There is too many users, possible software configurations, and so on. He
claims that it is better to just observe and analyse behaviour of real, life system. This

68

User activity detection in computer systems by means of Recurrence Plot analysis

requires ability of accessing necessary data and very fast responses to any problems.
The most important in such a case is disallowing for analysing software not to cause
performance cost on the systems it is running on.

Oskin [4] claims that increasing number of cores in CPU forces programmers
to analyse data describing execution details so he is able to check if multi-
threaded programs behave correctly and to correctly manage large number of virtual
processors. George Neville-Neil [3] observers that current operating systems provide
programmer with access to many internal hardware counters that can show how well
program is executing and if its performance suffers on particular hardware platform.
Shaw et al. [9] use specialised hardware with good amount of monitoring to make
sure that massive parallelism is well used and no chip is using power without doing
useful work. Counters in such systems include cache hits and misses, number of
context switches, number of correctly and incorrectly predicted branches, page faults,
etc. Although they are most useful for operating system programmers, they point why
computer is behaving slowly and thus are valuable resource of information about
internals of computer system behaviour. But again they generate vast amounts of
data which is very hard to analyse by human being.

As can be seen from cited literature there is still no consensus over which meth-
ods are the best and which ones in the best way represents behaviour of programs,
especially when different aspect of behaviour are analysed. This article presents
usage of non-linear methods to detect characteristics of user’s behaviour. Analysed
activities were using hardware present in the computer system: transmission over
network, burning files to CD and reading files from CD, so number of hardware
interrupts per second was used as the best descriptor of the system behaviour.
Interrupt usually occurs as result of hardware event, like keyboard or mouse activity,
disk or network transmission, comes from hardware clock, etc. The more interrupts,
the more activity comes from hardware, which means that programs are intensively
communicating with the outside environment.

Because of inter-program dependencies we assume that computer systems
are non-linear dynamic systems. The aim of the article is to present how non-
linear methods are able to detect subtle changes introduced into computer system
by user actions. The remainder of the article is structured as follows. The next
section describes procedure used to collect data, including hardware and software
configuration. Section 3. describes theory of mathematical means used to analyse
gathered data. Section 4. describes and analyses obtained results and their meaning.
The two last sections summarize paper and present possible future research.

69

Tomasz Rybak, Romuald Mosdorf

2. Methodology of data collection

Data was gathered on the AMD Duron 1.3GHz with 768MB or RAM and single
IDE 7200RPM hard drive. Debian Linux system (version named Sid) was used
as operating system for this computer. System had 1GB of active swap partition;
kernel was 32-bit 2.6.26 with Debian patches. System was not upgraded (neither
manually nor automatically) during entire course of experiment to avoid changes in
the environment that could influence process of gathering data or the data itself.

System had public IP address, so it was possible to connect to it from the
Internet. Network connection was not disabled, because doing so would not resemble
normal mode of operation that would be later examined. Some run-levels, however,
have not started any servers listening on the network which allowed for comparison
of situations with and without public services available. We claim that having active
network card does not invalidate experiment results.

Data was gathered by running the computer on different run-levels (set of
running system processes) on consecutive days. To collect numerical data vmstat
program was used. Detailed description of characteristics of Unix-like operating
systems, as well as details of process of collecting data can be found in our previous
paper [8].

As mentioned in Introduction, number of interrupts per second was chosen as a
measure of system’s activity. Data was gathered using vmstat program once a second
for about 90 minutes, depending on the observed run-level. Data from all possible
run-levels was gathered. We decided to use four cases: one from a system in which
only a bare necessity of programs needed to run the operating system is run (Single
mode, raw data in Figure 3 a)), one from a system in which all programs except
graphical environment are running (level 2, raw data on Figure 4 a)) one from a
system with active graphical environment (level 5, raw data on Figure 5 a)) and finally
from a system in which user is logged in, and he was transferring data over network,
copying it, burning to CD drive and reading data from CD (raw data on Figure 6 a)).

3. Non-linear signal analysis

Recurrence plot was chosen to analyse the gathered data describing characteristics of
the Linux system.

Fractal analysis of an one-dimensional signal assumes that all important dy-
namic variables present in system influence these time series. To perform non-linear
(fractal) analysis of the signal we need to transform this signal into one describing
point in a high-dimensional phase space. To do it we treat few consecutive values

70

User activity detection in computer systems by means of Recurrence Plot analysis

as coordinates of one point in the phase space. Usually all values are normalised
at the very beginning of analysis to simplify computations. Number of values taken
from a stream and treated as coordinates of points depend on the dimensionality of
phase space. Usage of all points that were captured in such a way results in attractor
reconstruction. In many cases not all values are used — this is called “stroboscopic
coordinates”. To avoid visual clutter only one of every N points is drawn. Number
of non-drawn points is determined by parameter T, called time delay; it is multiply
of time between points of original time series. Dimension and Lapunov coordinates
of original attractor and attractor reconstructed using stroboscopic coordinates and
using all points from original signal are the same.

At the same time choosing proper value of time delay T influences our ability to
analyse the signal. If 7 is too large input points lie too far away from each another to
provide enough information. If it is too small, input points lie too close which may
suggest presence of non-existent linear dependency in the signal. One of the possible
methods to find proper value of time delay is to find period (even non-exact one) and
to choose value slightly smaller than found period. If there is no visible period, one
can use autocorrelation (and take half of maximum value) or mutual information. In
case of mutual information we take value of the first minimum of this function.

1X,7)= ¥ Y plx,y)log L) (1
g p(x)p(y)

This function is constant or oscillates while T increases when data is generated
by periodical systems. In chaotic system value of this function decreases rapidly when
T increases. This function is therefore useful for determining whether underlying
mechanism is periodic or chaotic.

Recurrence plot is based on idea of calculating attractors. It is used to com-
pare all possible states that are represented by trajectories of points in the high-
dimensional phase space. If such trajectory goes through region that is close to
previous one, it is matched as recurrent. Recurrence plot is the chart showing all
periods when dynamic system’s state is repeating. Usually phase space has dimension
much larger than possible to visualise and understand by human. Recurrence plot
(proposed by Eckmann in 1987) allows to show on 2D chart all repeating states of
system and is based on matrix of similarity. Positive Lapunov points are matched by
diagonal lines’ lengths.

Recurrence plot can be defined as Haeviside function over difference of distance
of points is space (over some metrics) and the threshold. Its main three parameters
are T, dimension and threshold €. Too small threshold means that some points that are
far away will be taken as close ones; such situation can occur in the system where

71

Tomasz Rybak, Romuald Mosdorf

much of the values are very small and from time to time there is large spike, like ECG
signal.

Rij = 0O(e— [|x; — x;||) (2)

Single recurrence plot is 2D matrix of values from set of {0, 1}. Recurrence plot
is symmetrical amongst diagonal. It can be plotted on the screen or the paper. Black
dot (value of 1) at coordinates (i,j) means that on system at time i and j was in
similar state, because its attractor was represented as points that were close together
(their distance was less than the chosen threshold). This means that dot is plotted
if two sequences coming from input data are similar (their product is larger than
threshold). This allows for visually analysing similarity of signal at different scales.
Similar techniques are used in analysis of gene sequences (FASTA, BLAST) to find
similar gene sequences. This technique requires large amounts of memory and long
processing.

Recurrence plot can be used as a mean for visual analysis of the self-similarity
of signal, but also to find numerical characteristics of analysed dynamic system.
The most important parameter used in analysis described in this paper is laminarity
showing how stable the system is. This can be determined by measuring length of
horizontal (or vertical, as recurrence plot is the symmetrical matrix) lines. According
to the web page http://recurrence-plot.tk/ horizontal (and vertical) lines point to the
periods where system does not change much. Another important factor is divergence,
pointed by length of diagonal lines. Diagonal lines point to the states where system is
oscillating and trajectory returns to the close subspace. It can be connected to positive
Lapunov exponents and point where signal is repeating itself.

Dividing entire signal into parts and generating recurrence plots for each of them
results in series of recurrence plots. This allows for temporal analysis of lengths of
lines present in the plot. Technique used in this article creates many recurrence plots,
each starting one point later than the previous one. For each of calculated plots lengths
of horizontal and diagonal lines are calculated; then maximum lengths of appropriate
lines create charts used in analysis of system (and user) behaviour.

4. Characteristics of gathered data

Figure 1 shows the first 25 components of FFT signal. Single mode (shown in part
b) of the figure) has the lowest values of power, hence it is presented on a separate
chart. Its values are about 500 times smaller than those for other situations. At the
same time this chart shows the largest variation of frequencies present in signal. This

72

User activity detection in computer systems by means of Recurrence Plot analysis

a) FFT of system activity b) FFT of system activity (single mode)
700000 T — 2000 T T T
! Runlevel 2 —— 1800 + Single mode
600000 - Runlevel 5 ------- 7 i]
i Dokl oo 1600
500000 i\ ackup e 1400 g
T 400000 - g 1200 1
z “ £ 1000 8
a 300000 T o 800 7
200000 4 600 N
4 i
100000 E 288 i
RN LN _ 0 1 1 | |
0 0.001 0.002 0.003 0.004 0 0.001 0.002 0.003 0.004 0.005
Frequency [Hz] Frequency [Hz]

Fig. 1. Power spectrum of analysed signal. a) Run-level 2, Run-level 5, and user activity; b) Run-level
Single

means that in case of Single run-level noise is much more visible. This is similar to
the so-called pink noise.

Other run-levels’ frequencies are in similar range, although they differ in exact
values of power present in signal. All of those signals (shown in part a) of Figure 1)
have very distinctive main frequency. This was caused by disk activity during
scanning disk in search of suspicious files. In the case of the last data set, presenting
system with running user-initiated programs, it generates second frequency in the
chart. The large first part of tail in the case of backup is caused by inter-connection of
programs that were being run during backup process. Usage of the results from one
program by another one can cause resonance visible in the figure.

Figure 2 shows interdependence of the original signal and signal after some
time. The least amount of mutual information in the signal in in the Single mode,
which.is to be expected, as the smallest number of programs were running there. The
amount of mutual information in signal from Single mode does not decrease over
time. Run-levels 2 and 5 contain more information. They have similar overall shapes
of curves but chart of run-level 2 is more smooth. This comes from fact that in this
mode less programs are running (no digital clock, no screen-saver, no other graphical
utilities), so there is less interaction. But similar shape means that changes caused
by interactions between those new programs do not have long-lasting consequences.
This suggests that those programs do not run for long time and also one program
do not cause effects that affect running of other programs. Signals coming from run-
level 2 and 5 show small decrease in value of mutual information. At the same time
mutual information in the case of user interaction with the system is much larger, and
decreases very rapidly.

73

Tomasz Rybak, Romuald Mosdorf

Mutual information

1 [[[I | [[[
Single mode
08 - Runlevel 2 ------- i
L Runlevel 5 --------
Backup -
2 06| P :
i [
E :_‘\‘7’*'7\‘»77’“‘\’5*-—/\ ‘ """"""""""""""""""""" R
5 04 R
0.2 .
0 | | | 1

0O 5 10 15 20 25 30 35 40 45
Time [s]

Fig. 2. Mutual information of signal compared to itself after time

Recurrence plots was created with following values of parameters: T = 3,
dimension m = 2 and threshold € = 0.02. Detailed analysis of single recurrence plots
was described in [8]. This article is extension of previous work.

Window of size 150s was chosen for analysing series of recurrence plots.
Analysis for windows of size 60, 90, 120, 150, 180, and 240s was performed
initially. For short windows images were too noisy, and longer windows resulted
in disappearance of fine details. Hence our decision of size of window 150s. Of
course for different situations (especially different types of collected data) it might
be necessary to chose different size of window.

N-150 recurrence plots were generated for signal of length N. Then, for each
of recurrence plots from the window the longest diagonal and horizontal lines were
found. Following charts show how much those maximum lengths were changing over
time of experiment.

Figure 3 a) shows shows number of interrupts per second in single mode, in
which almost no service was active; Figures 3 b), ¢), and d) show sample recurrence
plots that were generated from this data. Although mean activity was constant, one
can see changes in the signal. In the beginning (first 3 minutes) signal shows great
variability. This is visible on the recurrence plot Figure 3 b) and is caused by post-
startup activity of the system. This is rather early phase of running of the system

74

User activity detection in computer systems by means of Recurrence Plot analysis

a) Original signal

o
c
g 50 Plotb) ' ' Blot o) ™~ Plotd)
> Lo Jned } | bl bt M b i o j
o 0 A I ! 1 had ! ~ ! I L
1S 0 1000 2000 3000 4000 5000 6000
Time [s]
b) Idle system c) Idle system d) Idle system e) Recurrence plot for M-s
120 bl : 120
60 E¥ 60
0 0
0 60 120
- f) Maximum length of horizontal lines
S 150
o VL WL VT M]
2 58 C | I m 1 ‘ ‘ e ‘ BT I]
- 0 1000 2000 3000 4000 5000 6000
Time [s]
- g) Maximum length of diagonal lines
2 100 T T T T T
L 50 | B
2 0 |) [N [\ 1
- 0 1000 2000 3000 4000 5000 6000

Time [s]

Fig. 3. Recurrence Plot for Single run-level. a) Original signal; b)-e) recurrence plots; f) maximum

lengths of horizontal lines g) maximum lengths of vertical lines

75

Tomasz Rybak, Romuald Mosdorf

which means that some programs are still initialising itself. In later chart signal is
much more nice. Only part shown in Figure 3 c) shows increased activity; because,
as mentioned in Section 2. system was connected to the internet, it is probable that it
was someone trying to connect to the system.

Figure 3 f) shows maximum length of horizontal lines As mentioned in section
describing recurrence plots (Section 3.), horizontal (and vertical) lines point to
stationary parts of the system, when system is laminar (it does not change or changes
very slowly). One can see that there are periods when horizontal lines are large, and
when they are short. In most situations we can observe “M-shaped” structures. At
the beginning there is no horizontal line, then there is jump to maximum length, then
some slight but steady decrease of length, but not much (less than 50%) and again
growth, and then almost immediate drop to zero. Those occurrences are connected to
the spikes in the signal, and they can be used to detect such rapid changes in values
in signal.

Diagonal likes (Figure 3 g)) are not long, as system is not changing much, and
long diagonal lines point times when system is rapidly changing.

Figure 4 shows number of interrupts in run-level 2, without active graphical
environment. Figure 4 b) shows recurrence plot from the period of disk-scan, and
part ¢) situation when there was not activity. Situation seen in the latter figure is not
interesting, and is similar to situation from run-level Single. This plot differs from the
one shown in [8] as it does not show any details. This is due to choosing threshold
which meant that for the idle period no points were printed. On the other hand
choosing lower threshold would mean that recurrence plot in the period of activity
would be almost entirely black; values differ over ten times between those cases.
Changing threshold in course of analysis is something to investigate but it could taint
data and results. Normalisation of data can also influence shape of recurrence plot.
We are not yet sure how to deal with comparing raw recurrence plots from highly
variable signals.

Figure 4 b) shows fragment of run-level 2 during high activity (disk scan, Phase
1). Signal changes but some self-similarity can be seen. Figure 4 c) is also run-level
2, but this is fragment after disk scanning, in the idle mode (Phase 2). Here recurrence
plot is almost entirely black: this means that there is much similarity in signal. This
also means that there is no long-lasting changes in signal, at least not enough to be
detected by the plot. This situation differs from from the Single run-level. Additional
daemons (programs constantly running in the background) caused change in activity
and system switches more often to serve them, which results in more variable signal.

Analysis of idle period did not result in any points in recurrence plots. The
only non-zero parts in graphs of maximum lengths of horizontal and diagonal lines,

76

User activity detection in computer systems by means of Recurrence Plot analysis

a) Original signal

<}
c
T T T T T
2 ig%g PRIp) Plotc)]
2]
£ 1 . s . i
1S 0 1000 2000 3000 4000 5000 6000 7000
Time [s]
b) Disk scan c) ldle system
120
60
0
0 60 120
_C d) Maximum length of horizontal lines
§> 150 T T T T T T
$ 100 | W\/]
GE') 58 1 1 1 1 1 1 7
- 0 1000 2000 3000 4000 5000 6000 7000
Time [s]
- e) Maximum length of diagonal lines
2 100 T T T T T T
] 50 M\ -
.GE) 0 1 1 1 1 1 1
- 0 1000 2000 3000 4000 5000 6000 7000
Time [s]

Fig. 4. Recurrence Plot for Run-level 2. a) Original signal; b) and c¢) recurrence plots; d) maximum
lengths of horizontal lines e) maximum lengths of vertical lines

77

Tomasz Rybak, Romuald Mosdorf

showing stability (Figure 4 d)) and divergence (Figure 4 ¢)) of system are those from
the full disk scan.

a) Original signal

o)
c
@ igg C IOt b) ' ' Plotc) ' ']
% - 4
g wwW”W“W% . . k]
1S 0 1000 2000 3000 4000 5000 6000 7000
Time [s]
b) Disk scan c) Idle system
120
60
0
0 60 120 0 60 120

d) Maximum length of horizontal lines

150 T T T T T
T F]

50 [y 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000
Time [s]

Line length
=
o
o

e) Maximum length of diagonal lines
100 T T T T T T

1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Time [s]

Line length
n
o o
T
1

Fig. 5. Recurrence Plot for Run-level 5. a) Original signal; b) and c) recurrence plots; d) maximum
lengths of horizontal lines e) maximum lengths of vertical lines

Figure 5 a) presents number of interrupts in run-level 5 with active graphical
session. Here situation is very similar to situation in run-level 2, described in previous
paragraphs. Similarity of those two situation was also described in previous paper [8],
Both recurrence plots and graphs of stability (Figure 5 d)) and divergence (Figure 5
e)) look almost exactly the same.

For run-level 5 Figure 5 b) shows recurrence plot during disk scanning (Phase
1). This plot is similar to one seen in run-level 2 (part a of this figure). But in case
of later activity, after disk scanning (Figure 5 c), image is different from run-level
2. This means that although there is self-similarity in signal, it is not on so many
levels. Here again additional graphical programs cause “ripples’ that cause signal to
be less smooth. The same situation was seen in information plot (Figure 2) and in
FFT (Figure 1).

78

User activity detection in computer systems by means of Recurrence Plot analysis

Figure 6 a) shows active graphical environment with user logged-in and during
backup creation. We can see four different phases: transmission of files over the
network, shown in Figure 6 b), compression of all files and making them ready to
save to the CD (Figure 6 ¢)), burning data to CD (Figure 6 d)), and reading files from
CD (Figure 6 e)).

a) Original signal

o)
5) 1500 FIoto) T 1ot q) T 1ot a TTFIote) T T
5 TS0) A ™ g
> -
£ 500 fud e A '
1S 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [s]
b) Backup (download) c) Backup (archival) d) Backup (burning) e) Backup (copying)
120 120
60 60
0 0
0 60 120 0 60 120 0 60 120 0 60 120

f) Maximum length of horizontal lines

R W N N M

1
1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [s]

Line length
=
)
=)

g) Maximum length of diagonal lines

=

g’ %(5)8 T T T T T T T

& i

q:) 58 B /‘_"_‘—hm 1 1 M /\\J_N]

- 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [s]

Fig. 6. Recurrence Plot for system with user activity. a) Original signal; b)-e) recurrence plots; f)
maximum lengths of horizontal lines g) maximum lengths of vertical lines

5. Discussion

Figure 2 shows signal’s mutual information. It shows that introducing user’s be-
haviour changes amount of inter-dependency of signal with respect to time. Charts
showing idle systems are flat; adding new programs (system daemons in case of
run-level 2 and graphical environment for run-level 5) increases values but does
not change shape of the system’s mutual information. When user is active, however,
situation changes dramatically. Mutual information is much larger and drops rapidly

79

Tomasz Rybak, Romuald Mosdorf

after the first few seconds. This means that user’s activities affects both long- and
short-term memory of the system, but as the time passes traces of user’s behaviour
disappear and inter-dependency of signal presenting user’s activity decreases to levels
present in systems without user’s actions.

This is the result of running programs working on the same task (creation of
backup copy of entire system) so programs depend on each other as results generated
by one program is input data for the next one. Running more programs causes
introduction of information into the system. Further analysis of mutual information
is needed to determine influence of different tasks: CPU-bound, limited by memory,
disk, and other subsystems on mutual information charts.

First three figures showing recurrence plots (3, 4, and 5) show situations without
any user activity thus showing idle system state. One can observe that first chart
presents rather constant mean activity with small variation. Next two charts show
two different stages; one (shown in Figures 4 ¢) and 5 c¢)) is similar to single run-
level but with slightly larger mean value. Both of them show large activity about two
minutes after system start and lasting for 10 to 15 minutes. This is caused by service
monitoring changes in files on entire hard-drive checking every file on disk. This lasts
and also caused running of many processes.

From analysis of system’s configuration (details in [8]) it is clear that single
mode (Figure 3) can be treated as entry (basic) level and presents the least sophisti-
cated situation. Its activity changes only slightly, and can be treated as constant. This
activity comes mostly from kernel responding to hardware and time events. Run-
levels 2 and 5 are quite similar, but 5 has higher level of base (average) activity
(when no user programs are running) because more programs are running in the
background as run-level 5 activates graphical environment, as opposed to run-level 2.
They both present much activity starting at 5 minutes from system start up to about
20 minutes. This is caused by cron job that is checking validity and consistency of
installed packages. After finishing it no other non-standard program is running.

As expected, running more processes in the higher run-levels introduces more
variability to signal. On the other hand when entire system is busy running the same
task situation is similar regardless of active run-level, as can be seen on Figures 4
a) and b) and 5 a) and b), which are very similar — even if the former comes from
system without any X-Window programs, and latter from active X session. But in
this situation entire system is busy checking all files present on hard drive — so any
differences disappear eclipsed by this activity.

As seen in Figure 6 e) showing self-similarity of signal during burning image to
CD, hardware-induced events are very regular. This means that system is influenced
not only by running programs and user’s actions but also by external sources of

80

User activity detection in computer systems by means of Recurrence Plot analysis

events, like network (where arrival of packet causes kernel to serve it) or hardware
events (sector read from the disk, empty buffer in the CD-ROM burner, sample
ready to be read from the sound card). As system has no control over external
environment and only partial control over hardware used to communicate with
physical environment, those events can be seen as coming from outside of the system.

Figure 6 c) presents recurrence plot of CPU-intensive task during backup
procedure (compression of files). We can see that there is high level of self-similarity.
Figures 6 d) and e) show signal during disk operations (burning image to CD). This
signal has very distinctive structure with period of about 40 seconds. It is caused by
buffering: kernel transmit data to DVD drive until its buffers are full, and then can
do switch to other tasks. When drive has no data it informs kernel which then again
transmit data needed to fill-up buffers. We can estimate that drive has buffer sufficient
to store data for about 40s of work.

Figure 6 g) shows behaviour of system through lengths of diagonal lines. At
the very beginning length of diagonal lines grows which means that system is
repetitive. After the end of disk scan maximum length of diagonal lines dropps
significantly which means that system’s behaviour is more chaotic. After starting
backup procedure the length of diagonal lines started growing; it means that repetitive
process was running again. During creation of backup maximum lengths of diagonal
lines was changing: it decreased, increased, then some spikes started to show.
Those changes point presence of some processes that were reoccurring at very few
occasions.

Figures 4 d) and 5 d) show maximum lengths of horizontal lines in recurrence
plots for run-levels 2 and 5. In those run-levels for the first twenty minutes was busy
checking all files on the hard drive, and then went idle waiting for user interaction.
The final minute of activity should be not taken into consideration as it shows activity
during system shutdown, as described in section 2.. In both of those cases system
is showing stationary and recurrent behaviours only during disk-scanning phase.
Idle system does not show any recurrent or stationary behaviour which means that
idle system presents chaotic behaviour. Programs run by user can thus be seen as
behaviours that introduce order into initially chaotic system. This is confirmed by
Figure 6 f) which shows increased lengths of horizontal lines. It means that running
programs increase amount of stability in the system.

“M-shapes” appear again on Figure 6 f); similar shapes were present on Figure 3
f). They are again caused by spikes present in the original activity chart. Figure 3 e)
shows horizontal lines that span through almost entire chart. Horizontal (and vertical)
lines do not come through entire plot but are separated at the crossing. There is small
gap in the lines where they cross; it is not visible in the chart with the naked eye, but

81

Tomasz Rybak, Romuald Mosdorf

it exists and limits length of the line in the chart. This means that when the crossing
is in the middle of the plot the line is the shortest. The line gets longer when lines
move away from the middle, as more of the line is not separated. The horizontal line
is thus the longest when gap is at the border of chart. When this gap moves to the
center of the plot, length of horizontal line decreases. This is the first part of the “M-
shape”; then gap moves away from the chart, length of line grows and second part the
this shape begins. The exact source of system’s activity causing occurrence of spikes
in the signal is currently unknown. Because the main purpose of presented research
was detection of changes caused by user’s actions, network was not disabled to limit
changes introduced to system by process of conducting experiment. This could be
caused by some network activity, like ARP requests, tries of infecting machine, etc.
Those “M-shapes” on chart showing maximum length of horizontal lines can be used
to detect such rapid changes in signal. This behaviour is not visible on other run-levels
(shown in Figures 4 b) and 5 b)), though. Horizontal lines on the system with user’s
requested actions are much less regular, as can be seen in Figure 6 b). This additional
source of events introduced by user’s actions is more powerful and can occlude subtle
differences introduced by external network packets coming to the system.

Lengths of diagonal lines in Single run-level recurrence plot is smaller than for
other run levels (Figure 3 c)). Charts showing maximum lengths of diagonal lines in
run-levels 2 and 5 (Figures 4 ¢) and 5 c) respectively) look similar to charts showing
horizontal lines from those recurrence plots (Figures 4 b) and 5 b)).

6. Summary

This article presents analysis of system activity using series of recurrence plots and
lengths of lines present on those plots. Number of interrupts fired in each second
was measured and treated as a signal describing the system activity. Data from four
different configurations of the system was gathered, with and without user activity.
We have shown that system activity can be investigated and explained using non-
linear methods.

Signal was analysed using a mutual information and recurrence plots. We have
shown that introducing user to the system increases amount of information present
in the system and the lone value of mutual information can be used to determine
whether the system is idle or if user is active. Shape of mutual information plot can
be used to determine whether the system is running short-living programs, or whether
it is busy with long-lasting, intensive tasks.

The majority of our investigation focused on using of recurrence plots as means
of analysing changes in the signal and detecting trends. Human user is operating on

82

User activity detection in computer systems by means of Recurrence Plot analysis

time scale of minutes so gathering signal once every second and analysing trends
over many seconds is a good compromise between detecting events in the system and
limiting amount of data to analyse.

Research described in this paper focused on using a number of interrupts as
a measure of the system activity. Number of interrupts is an important variable in
cases with small sets of running programs and when running programs are dependent
on hardware (network transmission, reading and writing CD). Context switch means
stopping one program and starting another. It is used in modern operating systems
to achieve multiprocessing, or at least illusion that many programs are running at
the same time. The larger number of context switches, the more frequently kernel
switches tasks. A large number of contest switches means that there are many
programs running on the system, and all of them are waiting for CPU (i.e. not
many are waiting for some external event). Number of context switches, as noted in
Section 2., can be useful in analysing systems in which many programs are running.
A difference between those variables and their interdependencies call for further
research.

As noted in Section 3. many parameters can influence shape of recurrence plot.
Further research is needed to investigate influence of parameters (like threshold €,
or time delay T) on results that can be obtained during analysis of data. Differences
between charts presented in previous ([8]) and current article show that it is crucial
to use proper values of parameters. Improper values can cause disappearance of
important details in the noise. Automatic procedure of generating proper values of
parameters can be very helpful with analysis of user’s behaviour.

Like Hoffman [2] we claim that observing real system is crucial; this is why we
use existing tools that do not influence system much. We also intend to find ways of
real-time automatic analysis of gathered signal. As noted in a comment to CACM
article!: “Another [usage of growing computing capabilities] might be defensive
computer security, analyzing past and current patterns of activity on the machine,
communicating with other machines, and working to prevent malicious activity.”

We were able to show that analysis of computer system activity allows to detect
changes introduced by user’s behaviour. User’s actions change state of the system
through running programs and requiring processing of data. This changes state of the
system; but those changes are not always visible in the signal without performing
analysis on it. Presented analysis using recurrence plots generates chart which allow
easily to detect user’s behaviour, such as transferring data over the network, writing

U http://cacm.acm.org/blogs/blog-cacm/23833-what-to-do-with-those-idle-cores/fulltext

&3

Tomasz Rybak, Romuald Mosdorf

data to compact disk, compressing data, or reading data from the external storage. By
analysing characteristics of the recurrence plots and periodicity of the data we were
able to detect rapid changes in the signal and distinguish between different signal
types, which leads to detecting user activity that generated particular signal shape.

Acknowledgements

We would like to thank the anonymous reviewer for thoughtful and valuable
comments that improved the article, and to our colleagues that helped with the
language mistakes.

References

[1] Matthew Garrett. Powering down. Communications of ACM, 51(9):42-46, 2008.

[2] Bill Hoffman. Monitoring, at your service. Queue, 3(10):34—43, 2005.

[3] George V. Neville-Neil. Kode vicious beautiful code exists, if you know where
to look. Communications of ACM, 51(7):23-25, 2008.

[4] Mark Oskin. The revolution inside the box. Communications of ACM, 51(7):70—
78, 2008.

[5S] George Porter and Randy H. Katz. Effective web service load balancing through
statistical monitoring. Communications of ACM, 49(3):48-54, 2006.

[6] Daniel Rogers. Lessons from the floor. Queue, 3(10):26-32, 2005.

[7] Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, and Vijay Machiraju. Supporting
application quality of service in shared resource pools. Communications of ACM,
49(3):55-60, 2006.

[8] Tomasz Rybak and Romuald Mosdorf. Computer users activity analysis
using recurrence plot. In International Conference on Biometrics and Kansei
Engineering, Cieszyn, Poland, 2009. AGH.

[9] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H.
Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C.
Chao, Michael P. Eastwood, Joseph Gagliardo, J. P. Grossman, C. Richard Ho,
Douglas J. Ierardi, Istvdn Kolossvary, John L. Klepeis, Timothy Layman, Chris-
tine McLeavey, Mark A. Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan,
Jochen Spengler, Michael Theobald, Brian Towles, and Stanley C. Wang. Anton,
a special-purpose machine for molecular dynamics simulation. Communications
of ACM, 51(7):91-97, 2008.

84

User activity detection in computer systems by means of Recurrence Plot analysis

WYKRYWANIE AKTYWNOSCI UZYTKOWNIKA PRZY UZYCIU
ANALIZY RECURRENCE PLOT

Strzeszczenie: Dzigki nieustannemu wzrostowi wydajnosci systeméw komputerowych
mozemy gromadzi¢ coraz wigcej danych opisujacych aktywnos$¢ systeméw. Dane te moga
by¢ analizowane aby zyska¢ wglad w zachowanie uzytkownikéw. Uwazamy ze systemy
komputerowe, z racji dzialania w nich wielu programéw ktére wpltywaja wzajemnie na
siebie, majaga charakter nieliniowy. Dlatego tez sposrdd wielu istniejacych metod analizy
duzych zbioréw danych zdecydowaliSmy si¢ na uzycie nieliniowych metod analizy.
Artykut przedstawia wykorzystanie nieliniowych metod w celu wykrycia subtelnych zmian
wprowadzonych do systemu poprzez dzialanie uzytkownika. Analiza skupia si¢ na poréwna-
niu systemu bezczynnego i takiego w ktdry dzialaja programy uruchomione przez uzytkown-
ika. Jako zmienna najlepiej charakteryzujaca system zostala wybrana liczba przerwan na
sekunde. Artykul przedstawia uzycie wykresu recurrence plot w celu wykrycia podobiefstw
w zachowaniu systemu, a przez to w dziataniu uzytkownika.

Badanie systemu wykorzystuje seri¢ wykresow aby wykry¢ charakter zmian wprowad-
zonych przez uzytkownika. Analiza dlugosSci pionowych i ukosnych linii pozwala na
wykrycie okresowych zachowan komputera, a tym samym na lepsze zrozumienie proceséw
zachodzacych w calym systemie. Pokazane zostato ze rézne zadania (transmisja danych
przy uzyciu sieci komputerowej, nagrywanie plikéw na dysk CD, odczyt plikéw z dysku
DVD, kompresja danych) generuja r6zne wykresy recurrence plot. Poniewaz zmiany stanu
systemu nie znajduja odzwierciedlenia w sygnale przedstawiajaacym liczbe przerwan na
sekunde, uzycie recurrence plot jest kluczowe do wykrycia zmian spowodowanych przez
uzytkownika.

Stowa kluczowe: badanie aktywnos$ci, aktywno$¢ systemu, analiza fraktalna, recurrence
plot

Artykut zrealizowano w ramach pracy badawczej S/W1/2/09.

85

