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Abstract: Dynamic Bayesian networks (DBNs) offer a framework for explicit modeling of
temporal relationships, and are useful as both prognostic and diagnostic tools. In medicine,
for example, they can assist in planning treatment options or in clinical management of
patients. They have been also widely applied to genomics and proteomics.

This paper shows how dynamic Bayesian networks can be used in a risk assessment in
medicine and presents an example of an application to cervical cancer screening. The model
is a convenient tool for assessing the risk of cervical precancer and invasive cervical cancer
over time. These quantitative risk assessments are helpful for establishing the optimal timing
of follow-up screening and are the first step toward generating individualized reevaluation
scheduling.
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1. Introduction

There is a variety of approaches to temporal modeling and reasoning in medicine
(see [1] and [2] for accessible summaries). These include hidden Markov models,
Markov decision processes, dynamic Bayesian networks, and dynamic influence
diagrams. Markov models have been used widely in medical decision-analytic and
cost-effectiveness models [25]. Ground breaking work based on dynamic models in
medicine was performed by Leong, Harmanec, Xiang, and colleagues [12,16,27],
who, in addition to Bayesian networks (BNs) and dynamic Bayesian networks
(DBNSs), used successfully a combination of graphical models with Markov chains
to address different medical problems, including colorectal cancer management,
neurosurgery ICU monitoring, and cleft lip and palate management. Several ap-
plications of dynamic Bayesian networks have been proposed in medicine. For
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example, NasoNet, a system for diagnosis and prognosis of nasopharyngeal cancer
[10], or a DBN for management of patients suffering from a carcinoid tumor
[26]. More recently, dynamic Bayesian networks have been used in genomics and
proteomics, for example, in predicting protein secondary structure [28], modeling
peptide fragmentation [15] and cellular systems [9], or in identifying gene regulatory
networks from time course microarray data [29].

This paper shows how dynamic Bayesian networks can be applied to risk
assessment in medicine. In addition to introducing the formalism to the readers,
it describes a real model, based on a DBN, originating from author’s work at the
University of Pittsburgh [3,4,5]. This model illustrates general principles of building
DBN models and applying them to risk assessment in medicine.

The reminder of this paper is structured as follows. Section 1. provides a brief
review of work focusing on temporal modeling in medicine. Sections 2. and 3. present
the formalism of Bayesian networks and their temporal extension, i.e., dynamic
Bayesian networks. Section 4. captures several issues related to cervical cancer
screening and describes an example of a risk model based on a dynamic Bayesian
network. Sections 5. concludes the paper.

2. Bayesian Networks

Bayesian networks (BNs) [21], also called belief networks or causal networks,
are acyclic directed graphs modeling probabilistic influences among variables. The
graphical part of a Bayesian network reflects the structure of a modeled problem,
while conditional probability distributions quantify local interactions among neigh-
boring variables. Bayesian networks have proven to be powerful tools for modeling
complex problems involving uncertain knowledge. They have been practically
employed in a variety of fields, including engineering, science, and medicine with
some models reaching the size of hundreds or thousands of variables.

Figure 1 captures a simple BN model. This example model includes four
risk factors and one effect of breast cancer. Each arc of this graph represents a
probabilistic relationship and it is quantified by a conditional probability distribution.
For example, the arc between the variables Family history and Breast Cancer tells
that family history of cancer impacts a risk of developing a breast cancer.

3. Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are a temporal extension of Bayesian networks
that allows to model dynamic processes. The hidden Markov model [22] is considered
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Breast Cancer (BC)

Mammaoaraphy (M)

Fig. 1. Example of a BN model

to be the simplest dynamic Bayesian network. While Bayesian networks (BNs) have
been used as modeling tools for over two decades, their temporal extension, dynamic
Bayesian networks, found their way into medical modeling only in the last decade.
Figure 2 captures an example of a dynamic Bayesian network model, an extension
of the model presented in Figure 1. The graphical structure of the DBN model is
similar to its static version, although there are additional arcs that quantify temporal
relationships between neighboring variables.

Init Conditions Télmporal Plate (10 slices)

Obesity (0)

\
)

[1]

| Breast
ancer (BC)
II

Mammagraphy (M)

Fig. 2. Example of a DBN model
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3.1 Temporal aspects of a DBN model

The dynamic arcs included in the example model, presented in Figure 2, represent
changes over time among the variables. The single digit numbers on the arcs denote
the temporal delay of influence. An arc labeled as / between the variables Lesion
(L) and Breast Cancer (BC), for example, denotes an influence that takes one time
step, while an arc labeled as 2 between the variables Obesity (O) and Breast cancer
(BC) denotes an influence that takes two time steps. Effectively, the model encodes
the following conditional distribution over the variable Breast Cancer (BC):

P(BG|A,FH,0;,L,_1,0,-2,BC,2). (1)

In other words, conditional probability distribution for Breast Cancer (BC)
depends on a patient Age (A), Family history (FH), and a current status of the variable
Obesity (0). Furthermore, it depends on Lesion (L) result in previous time step and
Obesity result recorded two time steps ago. Finally, it also depends on Breast Cancer
result two time steps ago. The time step that is chosen for a dynamic Bayesian model
varies on a modeled problem. In this example it could be a time interval used in
screening for a breast cancer.

Age (A)
Obesity (0} yes
Lesion (L) {-1] present absent
Obesity (0 j-2] yes no yes 1]
(Self) |t-2] yes no YES no yes no YES
[yes 0.1 0.08 0.02 0.01 0.1 0.08 0.02
»|no 0.5 0.52 0.58 0.55 0.5 0.52 0.58

Fig. 3. Fragment of a conditional probability table for the variable Breast Cancer

Since there are three types of arcs coming into the variable Breast Cancer (i.e.,
regular arcs representing static relationships between the variables and two types of
temporal arcs with labels / and 2), there are three different conditional probability
tables that quantify the variable Breast Cancer. Equations 2, 3, and 4 correspond
respectively to these three conditional probability tables (i.e., regular arcs: time step
t =0, temporal arcs labeled as /: time step ¢ = 1, and temporal arcs labeled as 2: time
stept =2):

P(BC—|A,FH,0,—) 2
P(BCi—1|A,O—1,Li—) 3)
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P(Bctzz |A, 01‘:27Lt:1 ’ 0t:0>BCt:O)- (4)

Figure 3 shows a fragment of the conditional probability table for the variable
Breast Cancer for time step t = 2 (see also Equation 4). In this case a conditional
probability distribution for Breast Cancer depends on the variables: Age, Obesity,
and Lesion in previous time step ¢ = 1. Furthermore, this conditional probability
distribution depends on the variables Obesity and Breast Cancer in time step t = 0.

3.2 Unrolled DBN model

Figure 4 captures three unrolled time steps of the DBN model presented in Figure
2. Four out of six variables are repeated in each time step, i.e., Lesion, Obesity,
Breast Cancer, Mammography. The variable Family history is not repeated since it
was modeled only as an initial condition and it is not changing over time. Another
variable that is not repeated is Age, although, it impacts the variable Breast Cancer
in each time step.

\@ T

Obesity (0)

Obesity
OED o ) =2
Breast ‘ Elreastcanc ==
Cancer (BC) (BC) t=1) e Br?ggg%ag)cer
Mammography (M}

Mammography
(M) (t=1) Mammaography
| =
o (M) (t=2)
Slice 0

Slice 1 Slice 2

Fig. 4. Unrolled DBN model for the first 3 time steps

3.3 Dynamic evidence

Evidence can be observed for any time step implemented in the model. Figure 5
shows dynamic evidence for the variable Mammography. The model has 10 time
steps (see Figure 2), therefore, there is a possibility of observing this variable for 10
different time steps. At time step O the result of the variable Mammography has been
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observed normal, at time step / normal, there is no observation at time step 2 and an
abnormal mammography was observed at time step 3.
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Fig. 5. Entering dynamic evidence for the variable Mammography

3.4 Risk assessment

Given observed dynamic evidence, the model can derive the probability distribution
over a variable in question (in this case, the variable Breast Cancer). For example,
the model will calculate the following probability:

P(BC(present)|E), 3)

where

E =A(55),0,(present),L,_(present),M,_;(abnormal). (6)

In this case, the model calculates a risk of developing a breast cancer for a 55
old, obese woman with a lesion and an abnormal mammography result in a previous
time step. Figure 6 shows the probability of developing a breast cancer given this
dynamic evidence, i.e., P(BC(present)|E). This plot shows the risk of developing
breast cancer over 10 time steps. It can be used to estimate the optimal time for
follow-up medical tests and procedures.
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Fig. 6. Risk of a breast cancer over time

3.5 Challenges

The most challenging task in building a dynamic model are missing data, since often
there is no complete follow-up of a patient case. A patient may show up for a test
and then skip a year or never come back. There are several ways of dealing with
this problem, one of which is representing missing values as an additional state [20].
Reasoning algorithms for Bayesian networks do not require complete information on
a patient case. This means that the posterior probability distribution over a variable
in question can be derived given any subset of possible observations.

4. Cervical Cancer Screening

DBNs are especially suitable for modeling screening data where there are temporal
dependencies among variables. In this section, I will present an example of a medical
problem, cervical cancer screening, in which DBNs have proven invaluable.

4.1 The problem of cervical cancer

Cervical cancer is the fifth most deadly cancer in women worldwide.! The intro-
duction of the Papanicolaou test (also called PAP smear or PAP test) for cervical
cancer screening has dramatically reduced the incidence and mortality of cervical

I'World  Health Organization, Fact sheet No. 297, Cancer, February 2006
(http://www.who.int/mediacentre/factsheets/fs297/en/index.html
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cancer. Abnormal PAP test result suggests the presence of potentially premalignant
or malignant changes in the cervix. PAP test allows for an examination and
possible preventive treatment. Recommendations for how often a PAP test should
be performed vary, depending on a screening program, between once a year and
once every five years. The most important risk factor in the development of cervical
cancer is infection with a high-risk strain of human papillomavirus (hrHPV). The
virus works by triggering alterations in the cells of the cervix, which can lead further
to the development of precancer, which can further result in cancer.

There have been several computer-based tools implemented to assist cervical
cancer screening, diagnosis, and treatment decisions. These tools include computer-
based systems to assist cytotechnologists and cytopathologists in the interpretation of
PAP test slides. For example, an automated cervical precancerous diagnostic system
extracts features from PAP test slides and then based on an artificial neural network
predicts the cervical precancerous stage [17]. Another tool, developed a decade ago,
is the PAPNET system [19]. The PAPNET system is also based on the neural network
approach and assists rescreening of PAP test slides in order to identify cervical
abnormalities that were not identified by a manual rescreening.

Cantor et al. [7] presented several decision-analytic and cost-effectiveness
models that could be applied to guide cervical cancer screening, diagnosis, and
treatment decisions. One of the decision-analytic models was a Markov model for the
natural history of HPV infection and cervical carcinogenesis [18]. The model assesses
life-time risk of cervical cancer as well as approximates the age-specific incidence of
cervical cancer. Similar model was built for the German population [24]. The model
was a Markov model for evaluating a life-time risk and life-time mortality of cervical
cancer. Another group of tools for cervical cancer screening are cost-effectiveness
models. Most of these cost-effectiveness models refer to investigation of an optimal
scenario for cervical cancer screening based on two tests: PAP test and testing for the
presence of hrHPV, e.g., [6,11,14].

There are many published studies that report risk assessments for cervical
precancer and invasive cervical cancer, e.g., [8,13,23]. All these approaches have
a major weakness, i.e., to my knowledge, all of these studies assess the risk based
on the current state of a patient and do not include any history record. Many of
these studies are based on cross-sectional data or on data coming from clinical trials.
The strength of graphical models, such as DBNs is that they can easily combine
information originating from history records and other sources.
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4.2 The Pittsburgh Cervical Cancer Screening Model

The risk model presented in this paper is called Pittsburgh Cervical Cancer Screening
Model (PccsM). The model was built in Pittsburgh (Pennsylvania, USA) and
the data that quantified it, reflect greater Pittsburgh population. The model is a
dynamic Bayesian network that consists of 19 variables including cytological and
histopathological data, and hrHPV test results. It also includes patient history data,
such as history of infections, history of cancer, history of contraception, history of
abnormal cytology, menstrual history, and demographics, i.e., age and race. One of
the unique features of the PCCSM is the fact that risk assessments are generated not
only based on a current state of a patient case, but also on a history record. Another
advantage of the model is its sound quantification. All numerical parameters of the
model were assessed based on a hospital data set coming from one population of
patients. The model was parametrized by means of data collected during four years
(2005-2008) and consisting of 393,531 patient records with PAP test result. The data
were collected at Magee-Womens Hospital of the University of Pittsburgh Medical
Center. More details on the model can be found in [5].

0.1 Ccervix, precancer

Fig. 7. Temporal beliefs

The PccsM generates risk assessments for cervical precancer and invasive cer-
vical cancer over time. Figure 7 captures quantitative risk assessments of precancer
over the time period of 15 years for a single example patient case. It shows that this
patient will run the highest risk of cervical precancer between the first and third year
after the initial test. The dip in the third year is due to a delay in the effect of an
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hrHPV virus infection. This risk will decrease after the fourth year. The reason for
this shape of the curve were abnormal observations for =/ and =2 (abnormal PAP
test results and positive hrHPV test results, respectively).

The PccsM model allowed for identifying those risk categories that are crucial
for follow-up planning, e.g., patients that are at higher risk for cervical cancer should
be screened more often than patients that are at lower risk. Figure 8 presents risk
assessments generated by the PCCSM model and stratified by the outputs of two
variables: PAP and HPV tests. The chart captures average two years risk assessments
for over 40,000 patient cases tested with the PCCSM model. It is evident from Figure
8 that a combination of HSIL+ PAP test result with a positive HPV test result indicated
the highest risk group for cervical precancer and cervical cancer. On the other hand a
positive HPV test result does not by itself put a patient in a high risk group if the PAP
test result is negative.

30%
25% A
20% A
15% -

B 1L L

Risk of Precancer and CxCa

Current state

Fig.8. PccsM risk assessments for cervical precancer and cervical cancer (CxCa) stratified by the
outputs of PAP and HPV test results

The PccsM model allows for individualized management of patients and
computes patient-specific risk based on the patients characteristics, history data, and
test results. Figure 9 captures the PCCSM risk assessments given different patient
history record. For example, a patient with all negative PAP test results in the past
(last bar on the chart) is at different risk category than a patient having at least one
ASCUS result (one of the abnormal PAP test results) in the past (the category Any-
ASCUS). From the chart we can see that a risk assessment for the latter category
doubles.
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Risk of Precancer and CxCA

Patient History Recerd

Fig. 9. PccsM risk assessments for cervical precancer and cervical cancer (CxCa)

The PccSM model is going to be used in Magee-Womens Hospital in the routine
practice of identifying high risk patients. We are in the process of building a web-
based graphical interface that will help to interact with the model.

5. Conclusions

Dynamic Bayesian networks are capable to model temporal relationships in
medicine. They allow for computing quantitative risk assessments given observed
variables. Dynamic Bayesian network models offer looking at risk assessments from
different perspectives. They allow to identify groups of patients that are at higher
risk of developing a disease. These models generate risk assessments over time.
Furthermore, they quantify risk given patient history record. These quantitative risk
assessments can be helpful in establishing the optimal timing of follow-up screening
and can increase the accuracy of risk estimates. This can have a noticeable effect on
the quality of medical care.
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ZASTOSOWANIE DYNAMICZNYCH SIECI
BAYESOWSKICH W WYZNACZANIU RYZYKA
W MEDYCYNIE

Streszczenie Dynamiczne sieci bayesowskie (DBNs) pozwalaja na modelowanie zalezno-
Sci czasowych. Modele te sa niejednokrotnie uzywane w prognostyce. Na przyktad w me-
dycynie, jako narzedzia do prognozowania czy tez planowania terapii. Dynamiczne sieci
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bayesowskie sg tez szeroko stosowane w genomice oraz w proteomice.

Atrykul ten opisuje, w jaki sposéb dynamiczne sieci bayesowskie moga by¢ zastosowane
w wyznaczaniu ryzyka w medycynie. W pracy przedstawiono przyktad zastosowania
dynamicznych sieci bayesowskich w profilaktyce raka szyjki macicy. Prezentowany model
zostat zbudowany w oparciu o dwa Zrédta wiedzy: opinie eksperta oraz dane medyczne.
Model ten pozwala na wyznaczanie ryzyka zachorowania na raka szyjki macicy. Wartosci
ryzyka wyznaczane przez model pozwalaja na okreslenie optymalnego czasu wykonania
kolejnych badan przesiewowych oraz na zindywidualizowanie procesu profilaktyki.

Stowa kluczowe: dynamiczne sieci bayesowskie, wyznaczanie ryzyka w medycynie
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