
ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ. INFORMATYKA

LEARNING FINITE GAUSSIAN MIXTURES USING
DIFFERENTIAL EVOLUTION

Wojciech Kwedlo1

1Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In the paper the problem of parameter estimation of finite mixture of multivariate
Gaussian distributions is considered. A new approach basedon differential evolution (DE)
algorithm is proposed. In order to avoid problems with infeasibility of chromosomes our
version of DE uses a novel representation, in which covariance matrices are encoded
using their Cholesky decomposition. Numerical experiments involved three version of DE
differing by the method of selection of strategy parameters. The results of experiments,
performed on two synthetic and one real dataset indicate, that our method is able to correctly
identify the parameters of the mixture model. The method is also able to obtain better
solutions than the classical EM algorithm.

Keywords: Gaussian mixtures, differential evolution, EM algorithm.

1. Introduction

Mixture models [13] are versatile tools used for modeling complex probability
distributions. They are capable to model observations, which are produced by a
random data source, randomly selected from many possible sources. Estimation
of the parameters of these sources and identifying which source produced each
observation leads to clustering of data [10]. Mixture models can be also used
for feature selection [17] or representation of class-conditional probability density
functions in discriminant analysis [9].

A finite mixture modelp(x|Θ) can be described by a weighted sum ofM > 1
componentsp(x|θm):

p(x|Θ) =
M

∑
m=1

αmp(x|θm), (1)

Zeszyty Naukowe Politechniki Białostockiej. Informatyka, vol. 5, pp. 19-33, 2010.

19

Wojciech Kwedlo

wherex = [x1,x2, . . . ,xd]
T is thed-dimensional data vector,α1,α2, . . . ,αM are mixing

probabilities, which satisfy the following conditions:

αm > 0, m= 1, . . . ,M and
M

∑
m=1

αm = 1.

θm is the set of parameters defining themth component and
Θ = {θ1,θ2, . . . ,θM,α1,α2, . . . ,αM} is the complete set of the parameters needed to
define the mixture. In the paper we consider a class of finite mixture models called
Gaussian mixtures in which each componentp(x|θm) follows multivariate normal
(Gaussian) distribution:

p(x|θm) =
1

(2π)d/2|Σm|1/2
exp(−

1
2
(x−µm)TΣ−1

m (x−µm)), (2)

whereµm and Σm denote the mean vector and covariance matrix, respectively, | · |
denotes a determinant of a matrix. The set parameters of themth component isθm =
{µm,Σm}. The set of the parameters of the complete Gaussian mixture model can be
defined as:

Θ = {µ1,Σ1, . . . ,µM ,ΣM,α1, . . . ,αM}. (3)

Estimation of the parameters of the mixture model is usuallyperformed using
the maximum likelihood (ML) approach. Given a set of independent and identically
distributed samplesX = {x1,x2, . . . ,xN}, called the training set, the log-likelihood
corresponding toM-component mixture is given by:

logp(X|Θ) = log
N

∏
i=1

p(xi |Θ) =
N

∑
i=1

log
M

∑
m=1

αmp(xi |θm). (4)

The maximum likelihood estimate of the parameters

ΘML = argmin
Θ

{− logp(X|Θ)}

cannot be found analytically (e.g. [3]). Therefore, the estimation must be performed
using an optimization algorithm.

In the paper a novel application a global optimization algorithm called diffe-
rential evolution (DE) to the problem of Gaussian mixture learning is proposed. The
rest of this paper is organized as follows. Section 2 discusses the research related
to our work. In Section 3 the details of the proposed application of DE to the
problem of Gaussian mixture learning are described. Section 4 presents the results
of computational experiments. The last section of this paper contains conclusions.

20

Learning Finite Gaussian Mixtures Using Differential Evolution

2. Related Work

The usual choice of obtaining ML parameters of a Gaussian mixture model is the
EM algorithm [6]. It is iterative procedure for minimizing− logp(X|Θ). The EM
algorithm for Gaussian mixtures is easy to implement and computationally efficient
[13]. However, it has an important drawback. Being a local search algorithm, it can be
easily trapped in a local minimum of− logp(X|Θ). Thus, the quality of the obtained
solutions is highly dependent on the initialization of the EM algorithm. The most
simple solutions include using multiple random starts and choosing the final estimate
with the smallest− logp(X|Θ) [13] and initialization by the clustering (e.g.k-means)
algorithms [3,13].

Many more elaborate extensions of the EM approach have been suggested in
order to tackle the problem of convergence to a local optimum. Verbeek et. al.
[20] proposed a deterministic greedy method in which the mixture components are
inserted into the mixture one after another. The method starts with the optimal one-
component mixture, the parameters of which can be easily found. After each insertion
of a new component the EM algorithm is applied to the new mixture. This approach
is much lest sensitive to initialization than the original EM algorithm. Figueiredo
and Jain [7] also used component-wise approach. Using minimum message length
criterion they developed a method, which is robust with respect to the initialization
and capable of discovering the number of the components. In the paper by Ueda et
al. [19] the EM algorithm was extended by a split-and-merge technique in order to
alleviate the problem of local optima.

Evolutionary algorithms (EAs) [14] are stochastic search techniques inspired by
the concept of the Darwinian evolution. Unlike local optimization methods, e.g. the
EM algorithm, they simultaneously process a population of problem solutions, which
gives them the ability to escape from local optima of the fitness function. Recently,
applications of EAs to the problem of ML estimation of parameters of a Gaussian
mixture model have been proposed. Most of the researches used a hybrid scheme,
which alternates between a step of EA consisting of selection and recombination
and a step consisting of iterations of EM. This approach was used by Martinez and
Vitrià [12], who employed selection and the mutation operators of evolution strategies
[2]. In their method the value of the fitness function is obtained by running the EM
algorithm (until it the converges) on mixture parameters encoded by a chromosome.
Pernkopf and Bouchaffra [15] proposed a combination of an EAwith EM, which by
using fitness function based on the minimum description length principle, is able to
estimate the number of the components in a mixture.

21

Wojciech Kwedlo

Differential evolution (DE) is an evolutionary algorithm proposed by Storn and
Price [18], employing a representation based on real-valued vectors. It has been
successfully applied to many optimization problems. DE is based on the usage of
vector differences for perturbing the population elements. Many researches suggested
extensions to the original DE. For an overview of recent developments and practical
applications of DE the reader is referred to [5]. The versionof DE with the self-
adaptation of control parameters, which we employ in the paper, was proposed by
Brest et al. [4]. According to our knowledge no application of DE to the problem of
Gaussian mixture learning has been proposed so far.

3. DE algorithms for Gaussian mixtures

3.1 Differential evolution

Several versions of DE have been proposed. For the purpose ofthis study the most
common variant is used, which, according to the classification proposed by [18] can
be described as DE/rand/1/bin.

Like all EAs, DE maintains a population ofS solutions of the optimization
problem. At the start of the algorithm, members of the population are initialized ran-
domly with the uniform distribution. Then DE performs multiple iterations in three
consecutive steps: reproduction (creation of a temporary population), computing of
the fitness function for all members of the temporary population, and selection.

Let ui,G denote thei-th member (i = 1, . . . ,S) of the population in theG-
th iteration. Usuallyui,G takes a form of aD-dimensional real-valued vector, i.e.
ui,G ∈ ℜD.

Reproduction in DE creates a temporary population of trial vectors. For each
solutionui,G a corresponding trial vectoryi,G is obtained by mutation and crossover
operators. The mutation operator generates a mutant vectory′i,G according to the
equation:

y′i,G = ua,G +F ∗ (ub,G−uc,G), (5)

whereF ∈ [0,2] is a user-supplied parameter called amplification factor and a,b,c∈
1, . . . ,Sare randomly selected in such way thata 6= b 6= c 6= i.

The final trial vectoryi,G is obtained by the crossover operator, which mixes
the mutant vectory′i,G with the original vectorui,G. Let us assume thatui,G =
(u1i,G,u2i,G, . . . ,uDi,G). Each elementy ji ,G (where j = 1, . . . ,D) of the trial vector
yi,G is generated as:

y ji ,G =

{

y′ji ,G if rnd(j) < CRor j = e

u ji ,G otherwise
. (6)

22

Learning Finite Gaussian Mixtures Using Differential Evolution

whereCR∈ [0,1] is another user-supplied parameter called crossover factor, rnd(j)
denotes a random number from the uniform distribution on[0,1] which is generated
independently for eachj. e∈ 1, . . . ,S is a randomly chosen index which ensures that
at least one element of the trial vectoryi,G comes from the mutant vectory′i,G.

The remaining two phases of DE generation are computation ofthe fitness for
all members of the trial population and selection. Selection in differential evolution
is very simple. The fitness of each trial solutionyi,G is compared to the fitness of
the corresponding original solutionui,G. The trial vectoryi,G survives into the next
iteration becomingui,G+1 if its fitness is better. Otherwiseyi,G is discarded andui,G+1

is set toui,G

3.2 Choice of control parametersF andCR

The parametersF and CR have a significant impact on convergence speed and
robustness of the optimization process. The choice of theiroptimal values is an
application-dependent task. In [18] the valuesF = 0.5 andCR= 0.9 were suggested.
F andCRmay be also selected using a trial-and-error approach, which requires many
optimization runs and may be infeasible in many practical applications.

To alleviate the problem of parameter tuning, Brest et al. [4] proposed a self-
adaptation method forF andCR. In this method, amplification and crossover factors
evolve together with population members. Each member of theboth trial and target
populations is augmented with its own amplification factor and crossover factor. Let
us denote byFu

i,G andFy
i,G the amplification factors associated with the vectorsui,G

andyi,G, respectively. Similarly, let us denote byCRu
i,G andCRy

i,G the crossover factors
associated with the vectorsui,G andyi,G, respectively.

Before the mutationFy
i,G is generated as:

Fy
i,G =

{

L+ rnd2∗U if rnd1 < τ1

Fu
i,G otherwise

. (7)

rnd1 and rnd2 are uniform random values from[0,1], τ1 ∈ [0,1] is the probability
of choosing new random value ofFy

i,G, L andU are the parameters determining the
range forFy

i,G.
Similarly toFy

i,G, CRy
i,G is generated before the mutation as:

CRy
i,G =

{

rnd3 if rnd4 < τ2

CRu
i,G otherwise

, (8)

23

Wojciech Kwedlo

whereτ2 ∈ [0,1] is the probability of choosing new random value ofCRy
i,G.

Fy
i,G obtained by (7) is used to generate the mutant vector according to (5).CRy

i,G
obtained by (8) is used to generated the trial vector according to (6). The amplification
and crossover factors undergo selection together with associated vectors. If in the
selection processui,G+1 is set toyi,G thenFu

i,G+1 is set toFy
i,G andCRu

i,G+1 is set to
CRy

i,G. Otherwise,Fu
i,G+1 is set toFu

i,G andCRu
i,G+1 is set toCRu

i,G.
It may seem that self-adaption ofF andCR introduces another four parameters

(L, U , τ1, τ2) which must be fine-tuned by the user by means of the trial-and-
error method. However, Brest et al. [4] used fixed values of these parameters in
all experiments and obtained promising results. Followingtheir suggestion in our
experiments we usedτ1 = τ2 = 0.1. L andU were set to 0.05 and 0.35 respectively,
which ensured thatFy

i,G ∈ [0.05,0.4].
The original method of Brest et. al. self-adapted both parametersF andCR. It

was tested on benchmark numerical optimization problems, with dimensionD ≤ 30.
However, our preliminary experiments indicated, that it yielded poor results, when
applied to the much more difficult problem of Gaussian mixture learning. Therefore
in the paper we propose to use a new approach, in whichF is self-adapted in a manner
described in [4], whereasCR is set to a constant value close to 0 according to the
following experimentally developed formula:CR= 2/D, whereD is the dimension
of a population element.

3.3 The fitness function

The fitness function used by the DE is− logp(X|Θ), where logp(X|Θ) is defined by
(4). Because of the minus sign, the algorithm is configured tominimize the fitness.

3.4 Encoding of the parameters of a Gaussian mixture model bychromosomes

In order to apply a DE algorithm to the problem of Gaussian mixture learning we
have to work out a method for encoding mixture parameters (3)by real-valued
vectors (chromosomes). The encoding of mixing probabilities α1,α2, . . . ,αM and
mean vectorsµ1,µ2, . . . ,µM is very straightforward. The mixing probabilities (M real
values) and all the elements of mean vectors (dM real values) are directly encoded in
a chromosome using the floating-point representation.

Unfortunately, the elements of covariance matrices cannotbe encoded in a
similar way. A covariance matrixΣm, m = 1, . . . ,M of each Gaussian component
of a mixture (1) must be a symmetric positive-definite matrix, i.e. for each non-
zero x ∈ ℜd xTΣmx > 0 [11]. Since, eachΣm is symmetric, only itsd(d + 1)/2

24

Learning Finite Gaussian Mixtures Using Differential Evolution

diagonal and over-diagonal elements need to be encoded. However, if we encoded
these elements directly, the purely random crossover and mutation operators of DE
would not preserve positive-definiteness of the covariancematricesΣm. In almost all
cases the matrices encoded in a trial vectoryi,G would not be positive-definite and
thus could not be interpreted as covariance matrices.

To overcome the above obstacle, the covariance matrices areencoded in a
chromosome using their Cholesky decomposition [16]. Each covariance matrixΣm,
m= 1, . . . ,M can be expressed as a product of a lower triangular matrixLm and its
transpose:

Σm = LmLT
m. (9)

The diagonal elements of the lower triangular matrixLm must be strictly positive.
This condition is much easier to satisfy during the DE evolution, than the positive-
definiteness of the covariance matrixΣm. For that reason we have chosen to encode
elements ofLm rather thanΣm in a chromosome. To ensure the positive-definiteness
of Σm we inspect the trial vectoryi,G and check each diagonal element ofLm. If the
value of the diagonal element is lower than zero, it is replaced in the trial vectoryi,G

by its absolute value.

4. Experiments

4.1 Experimental setup

In the experiments we used three versions of DE differing by the method of parameter
control:

– A version using fixed values of the parameters (i.e.F = 0.5,CR= 0.9 as proposed
in [18]) during the run of the algorithm.

– A version using self-adaptiveF andCR [4] described in the subsection 3.2.
– A version using self-adaptiveF only.

Additionally, the EM algorithm [13], which is the standard method for estimation of
the parameters of the Gaussian Mixture Model was used in the comparison.

In all the experiments the population sizeSwas set to 32. All the results reported
in this section are the average over 30 independent runs using random starting
conditions. The EM algorithm was initialized using a randommethod described in
[7].

All the algorithms were implemented in the C++ language and compiled by the
Intel C++ version 10.1 compiler using optimizing options (-O3 -ipo -xT -fno-alias).
It was run on a system with two quad-core Intel Xeon 5355 (2.66GHz) processors.

25

Wojciech Kwedlo

The comparison of the DE algorithms was performed on the equal CPU time basis:
all three versions of DE were were allocated 200 seconds of CPU time, and the
final result was the fitness of the best individual in the population obtained after 200
seconds of evolution.

4.2 Synthetic datasets

The first example uses 900 samples from 3-component bivariate mixture from [7].
For this exampleα1 = α2 = α3 = 1/3, µ1 = [0,−2]T , µ2 = [0,0]T , µ3 = [0,2]T and
all three covariance matrices are equal:Σ1 = Σ2 = Σ3 =

[

2 0
0 0.2

]

.
Fig. 1a shows the true mixture and 900 samples of it, whereas Fig. 1b shows

the mixture estimated by the DE with self-adaptiveF (mixtures estimated by the
other two versions were almost identical). It can be seen, that the DE algorithm has
correctly identified the mixture parameters. Fig. 2 shows the convergence of three
versions of DE. The curves represent the fitness of the best individual in the DE
population plotted as a function of the number of fitness function calls performed
by the algorithms. For that dataset all the algorithms converged towards global
minimum, although the DE with self-adaptiveF converged slower than the other
two methods.

a) b)

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6 -4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

Fig. 1. Estimation of parameters of 3-component bivariate mixture. The solid ellipses are level-curves
of each component: a) true mixture b) mixture estimated by DEwith self-adaptiveF .

In the second example, the mixture components overlap. Two of them share
a common mean, but have different covariance matrices. The 1000 samples were
taken from the mixture with following parameters:α1 = α2 = α3 = α4 = 0.25 and

26

Learning Finite Gaussian Mixtures Using Differential Evolution

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

0 2 4 6 8 10 12

−
lo

g
p(

X
|Θ

)

Number of fitness function calls (×105)

Self adaptiveF andCR
Self-adaptiveF

F = 0.5,CR= 0.9

Fig. 2. Convergence of three versions of DE for the 3-component mixture. The curves are average over
30 independent runs.

µ1 = µ2 = [−4,4]T , µ3 = [2,2]T , µ4 = [−1,−6]T andΣ1 =
[

1 0.5
0.5 1

]

, Σ2 =
[

6 −2
2 6

]

, Σ3 =
[

2 −1
−1 2

]

, Σ4 =
[

0.125 0
0 0.125

]

. Fig. 3a shows the true mixture and 1000 samples of it,
whereas Fig. 3b shows the mixture estimated by DE with self-adaptiveF. Once again
it can be seen, that the algorithm has correctly identified the mixture parameters.
Fig. 4 shows the convergence of three variants of DE. This example was clearly too
difficult for the DE with constant vales ofF andCRas it was unable to find the global
minimum of the log-likelihood. It can be also seen, that DE with self adaptiveF and
CRconverged slightly faster than DE with self-adaptiveF only.

4.3 Real-life dataset

In the last experiment, the well-known iris dataset (150 samples,d = 4) [8] describing
iris flowers from the Gaspé peninsula was used. This dataset was obtained from the
UCI machine learning repository [1]. The iris flowers described in this dataset are
divided into three classes. For that reason we usedM = 3. Of course, since it is a real-
life, not synthetic dataset, the underlying probability density functions are not known
and could not be visualized. Therefore Fig. 5 shows only the mixture estimated by

27

Wojciech Kwedlo

a) b)

-15

-10

-5

0

5

10

-10 -5 0 5 10 -15

-10

-5

0

5

10

-10 -5 0 5 10

Fig. 3. Estimation of parameters of 4-component bivariate Gaussian mixture with overlapping compo-
nents. The solid ellipses are level-curves of each component: a) true mixture b) mixture estimated by
DE with self-adaptiveF .

3980

4000

4020

4040

4060

4080

4100

0 10 20 30 40 50 60 70 80 90

−
lo

g
p(

X
|Θ

)

Number of fitness function calls (×104)

Self adaptiveF andCR
Self-adaptiveF

F = 0.5,CR= 0.9

Fig. 4.Convergence of three versions of DE for the 4-component mixture with overlapping components.
The curves are average over 30 independent runs.

the DE with self-adaptiveF. Since iris is four-dimensional dataset, we used principal
component analysis (PCA) [11] to project data and the estimated mixture on the first

28

Learning Finite Gaussian Mixtures Using Differential Evolution

two principal components. Fig. 6 shows the convergence of three versions of DE.
This experiment clearly demonstrated that fast convergence in the initial phase of the
evolution does not necessarily lead to best final solution, as the slowest algorithm (i.e.
DE with self-adaptiveF) found the solution with the lowest− logp(X|Θ).

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4

Fig. 5. iris data (projected on two principal components) and the mixture estimated by the DE with
self-adaptiveF . The solid ellipses are level-curves of each component.

4.4 Summary of the experiments and the comparison with the EMalgorithm

The experiments are summarized by the Table 4.4, which showsthe final
− logp(X|Θ) obtained by the DE algorithms after 200 seconds of evolution. Ad-
ditionally, the last column of the table shows the result obtained by the EM algorithm
[13]. The results suggest the following conclusions:

– All versions of DE outperform the local search algorithm (EM). However it
should be noted that EM algorithm is much faster than DE, requiring much less
than one second (on our hardware) to converge.

– DE with self-adaptiveF only outperforms two other versions of DE.

29

Wojciech Kwedlo

175

180

185

190

195

0 5 10 15 20 25 30

−
lo

g
p(

X
|Θ

)

Number of fitness function calls (×105)

Self adaptiveF andCR
Self-adaptiveF

F = 0.5,CR= 0.9

Fig. 6. Convergence of three versions of DE for the iris dataset. Thecurves are average over 30
independent runs.

5. Conclusions

In this paper an application of DE to the problem of Gaussian mixture learning was
described. To avoid a problem with infeasibility of chromosomes we proposed a novel
encoding method, in which covariance matrices were encodedusing their Cholesky
decomposition. In the experiments three versions of DE, differing by the method of
parameter control, were examined and compared to the EM algorithm.

The results of our study allow us to recommend DE with self-adaptiveF over
the other two versions and the EM algorithm. Although it converges slowly in the
initial phase of evolution, it is able to find solutions not worse (and sometimes better,
if the problem is difficult enough as it was demonstrated by the experiment with the
iris dataset) than other versions of DE.

There are several possible directions of future work. One ofthem is the
development of a memetic algorithm combining DE with fast local search procedure
(e.g. the EM algorithm). Such hybrid method would be able to retain the advantages
of both approaches i.e. the fast convergence of EM and the ability find a global
optimum of DE.

30

Learning Finite Gaussian Mixtures Using Differential Evolution

Table 1. The final− log p(X|Θ) values obtained by the four tested methods. The results are average
over 30 independent runs.

Dataset F = 0.5,CR= 0.9 Self adaptiveF andCRSelf adaptiveF EM
3-component mixture 3074.1 3073.8 3073.8 3148.8
4-component mixture 4008.2 3997 3997 4085.6

iris 184.93 182.14 180.03 187.58

Another direction of future research is related to the development of a parallel
version of our approach. The most time-consuming step of thealgorithm is computa-
tion of the fitness function since it requires theM passes over the training set. It would
be quite straightforward to parallelize this step by concurrently computing the fitness
of the different population members on different processors of a parallel system.

References

[1] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.
[2] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – a compre-

hensive introduction.Natural Computing, 1(1):3–52, 2002.
[3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag,

2006.
[4] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-adapting

control parameters in differential evolution: A comparative study on numerical
benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[5] U. K. Chakraborty, editor.Advances in Differential Evolution. Springer, 2008.
[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm.Journal of the Royal Statistical Society.
Series B, 39(1):1–38, 1977.

[7] M.A.T. Figueiredo and A.K. Jain. Unsupervised learningof finite mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(3):381–396, 2002.

[8] R. A. Fisher. The use of multiple measurements in taxonomic problems.Ann.
Eugenics, 7:179–188, 1936.

[9] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures.
Journal of the Royal Statistical Society. Series B (Methodological), 58(1):155–
176, 1996.

31

Wojciech Kwedlo

[10] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data. Prentice-Hall,
1988.

[11] R.A. Johnson and D.W. Wichern.Applied Multivariate Statistical Analysis.
Prentice Hall, 6th edition, 2007.

[12] A. M. Martinez and J. Vitria. Learning mixture models using a genetic version
of the EM algorithm.Pattern Recognition Letters, 21(8):759–769, 2000.

[13] G. McLachlan and D. Peel.Finite Mixture Models. John Wiley and Sons, 2000.
[14] Z. Michalewicz.Genetic Algorithms + Data Structures = Evolution Programs.

Springer Verlag, 1996.
[15] F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning

Gaussian mixture models.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1344–1348, 2005.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd
edition, 2007.

[17] P. Pudil, J. Novovicova, N. Choakjarernwanit, and J. Kittler. Feature selection
based on the approximation of class densities by finite mixtures of special type.
Pattern Recognition, 28(9):1389–1398, 1995.

[18] R. Storn and K. Price. Differential evolution - a simpleand efficient heuristic
for global optimization over continuous spaces.Journal of Global Optimization,
11(4):341–359, 1997.

[19] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMEMalgorithm for
mixture models.Neural Computation, 12(9):2109–2128, 2000.

[20] J. J Verbeek, N. Vlassis, and B. Kröse. Efficient greedy learning of Gaussian
mixture models.Neural Computation, 15(2):469–485, 2003.

UCZENIE SKO ŃCZONYCH MIESZANIN
ROZKŁADÓW NORMALNYCH PRZY POMOCY

ALGORYTMU EWOLUCJI RÓ ŻNICOWEJ

StreszczenieW artykule rozwȧzono problem uczenia parametrów skończonej mieszaniny
wielowymiarowych rozkładów normalnych. Zaproponowano nową metodę uczenia opartą
na algorytmie ewolucji ró̇znicowej. W celu uniknięcia problemów z niedopuszczalnością
chromosomów algorytm ewolucji różnicowej wykorzystuje nową reprezentację, w której
macierze kowariancji są reprezentowane przy pomocy dekompozycji Cholesky’ego. W
eksperymentach wykorzystano trzy wersje algorytmu ewolucji różnicowej ró̇zniące się

32

Learning Finite Gaussian Mixtures Using Differential Evolution

metodą doboru parametrów. Wyniki eksperymentów, przeprowadzonych na dwóch syn-
tetycznych i jednym rzeczywistym zbiorze danych, wskazuj ˛a, że zaproponowana metoda
jest w stanie poprawnie identyfikować parametry modelu. Metoda ta osiąga również lepsze
wyniki niż klasyczyny algorytm EM.

Słowa kluczowe: mieszaniny rozkładów normalnych, ewolucja różnicowa, algorytm EM

Artykuł zrealizowano w ramach pracy statutowej S/WI/2/08

33

