ZESZYTY NAUKOWE POLITECHNIKI BIALOSTOCKIEJ. INFORMATYKA

LEARNING FINITE GAUSSIAN MIXTURES USING
DIFFERENTIAL EVOLUTION

Wojciech KwedId

1Faculty of Computer Science, Bialystok University of Tesluyy, Biatystok, Poland

Abstract: Inthe paper the problem of parameter estimation of finitetuméxof multivariate
Gaussian distributions is considered. A new approach basetifferential evolution (DE)
algorithm is proposed. In order to avoid problems with isfbdity of chromosomes our
version of DE uses a novel representation, in which coveeamatrices are encoded
using their Cholesky decomposition. Numerical experiraémtolved three version of DE
differing by the method of selection of strategy paramet&ire results of experiments,
performed on two synthetic and one real dataset indicaaéptir method is able to correctly
identify the parameters of the mixture model. The methodIse able to obtain better
solutions than the classical EM algorithm.

Keywords: Gaussian mixtures, differential evolution, EM algorithm.

1. Introduction

Mixture models [13] are versatile tools used for modelingnptex probability
distributions. They are capable to model observationschviaire produced by a
random data source, randomly selected from many possiblecesn Estimation
of the parameters of these sources and identifying whichiceoproduced each
observation leads to clustering of data [10]. Mixture medehn be also used
for feature selection [17] or representation of class-d@whl probability density
functions in discriminant analysis [9].

A finite mixture modelp(x|®) can be described by a weighted sum\bf> 1
componentg(X|6m):

M
P(X|©) = Z AmP(X|Bm), (1)
m=1

Zeszyty Naukowe Politechniki Biatostockiej. Informatykenl. 5, pp. 19-33, 2010.

19

Wojciech Kwedlo

wherex = [x1,%p,. .., Xq4]" is thed-dimensional data vectamy,dy, ..., 0y are mixing
probabilities, which satisfy the following conditions:

M
Om>0 m=1...,Mand z om=1
m=1

Om is the set of parameters defining themth component and

© ={01,0,...,0u,01,02,...,am} is the complete set of the parameters needed to
define the mixture. In the paper we consider a class of finitéure models called
Gaussian mixtures in which each compone(%|6,,) follows multivariate normal
(Gaussian) distribution:

plx|om) = XSO) T), @)

1
(Zﬂ)d/2|zm|1/2 €
wherepn and 2, denote the mean vector and covariance matrix, respectively
denotes a determinant of a matrix. The set parameters aofttheomponent i$,, =
{Mm, Zm}. The set of the parameters of the complete Gaussian mixtadelncan be
defined as:

@:{l.ll,zl,...,UM,ZM,(Xl,...,GM}. (3)

Estimation of the parameters of the mixture model is usyadisformed using
the maximum likelihood (ML) approach. Given a set of indegestt and identically
distributed sampleX = {x%,x?,...,xN}, called the training set, the log-likelihood
corresponding td/1-component mixture is given by:

N) N M .
logp(X|®) =log[] p(X|©) = 5 log 3 amp(X'|Bm). @)
[Pocie)= 2109 2 cmPlx{Em
The maximum likelihood estimate of the parameters
OuL = arg@min{— logp(X|©)}

cannot be found analytically (e.g. [3]). Therefore, theéneation must be performed
using an optimization algorithm.

In the paper a novel application a global optimization &athan called diffe-
rential evolution (DE) to the problem of Gaussian mixturarfeng is proposed. The
rest of this paper is organized as follows. Section 2 digsi$ise research related
to our work. In Section 3 the details of the proposed apptcabf DE to the
problem of Gaussian mixture learning are described. Seetipresents the results
of computational experiments. The last section of this papatains conclusions.

20

Learning Finite Gaussian Mixtures Using Differential Eutbn

2. Related Work

The usual choice of obtaining ML parameters of a Gaussiartungxmodel is the
EM algorithm [6]. It is iterative procedure for minimizing logp(X|®). The EM
algorithm for Gaussian mixtures is easy to implement andpdgationally efficient
[13]. However, it has an important drawback. Being a localsle algorithm, it can be
easily trapped in a local minimum eflog p(X|®). Thus, the quality of the obtained
solutions is highly dependent on the initialization of thi®l Rlgorithm. The most
simple solutions include using multiple random starts ambsing the final estimate
with the smallest- log p(X|®) [13] and initialization by the clustering (e.k-means)
algorithms [3,13].

Many more elaborate extensions of the EM approach have hegyested in
order to tackle the problem of convergence to a local optimMerbeek et. al.
[20] proposed a deterministic greedy method in which thetmneccomponents are
inserted into the mixture one after another. The methodssteth the optimal one-
component mixture, the parameters of which can be easitydfolfter each insertion
of a new component the EM algorithm is applied to the new métirhis approach
is much lest sensitive to initialization than the origindl E&lgorithm. Figueiredo
and Jain [7] also used component-wise approach. Using mmimmessage length
criterion they developed a method, which is robust with eespo the initialization
and capable of discovering the number of the componenthieipaper by Ueda et
al. [19] the EM algorithm was extended by a split-and-megghhique in order to
alleviate the problem of local optima.

Evolutionary algorithms (EAs) [14] are stochastic seasgthhiques inspired by
the concept of the Darwinian evolution. Unlike local optration methods, e.g. the
EM algorithm, they simultaneously process a populationrobfem solutions, which
gives them the ability to escape from local optima of the fi;nginction. Recently,
applications of EAs to the problem of ML estimation of paraene of a Gaussian
mixture model have been proposed. Most of the researchesaubgbrid scheme,
which alternates between a step of EA consisting of seleditd recombination
and a step consisting of iterations of EM. This approach veasl by Martinez and
Vitria [12], who employed selection and the mutation opansibf evolution strategies
[2]. In their method the value of the fitness function is obéa by running the EM
algorithm (until it the converges) on mixture parametersogiled by a chromosome.
Pernkopf and Bouchaffra [15] proposed a combination of anniA EM, which by
using fitness function based on the minimum descriptiontlepgnciple, is able to
estimate the number of the components in a mixture.

21

Wojciech Kwedlo

Differential evolution (DE) is an evolutionary algorithrmgposed by Storn and
Price [18], employing a representation based on real-dakextors. It has been
successfully applied to many optimization problems. DEdseda on the usage of
vector differences for perturbing the population eleméavitany researches suggested
extensions to the original DE. For an overview of recent tigareents and practical
applications of DE the reader is referred to [5]. The vergdmE with the self-
adaptation of control parameters, which we employ in theepapas proposed by
Brest et al. [4]. According to our knowledge no applicatidrD& to the problem of
Gaussian mixture learning has been proposed so far.

3. DE algorithms for Gaussian mixtures

3.1 Differential evolution

Several versions of DE have been proposed. For the purpabésaftudy the most
common variant is used, which, according to the classibiogbiroposed by [18] can
be described as DE/rand/1/bin.

Like all EAs, DE maintains a population @& solutions of the optimization
problem. At the start of the algorithm, members of the pajputeare initialized ran-
domly with the uniform distribution. Then DE performs mpl8 iterations in three
consecutive steps: reproduction (creation of a temporapuiation), computing of
the fitness function for all members of the temporary poputatand selection.

Let uic denote thei-th member i(= 1,...,S of the population in theG-
th iteration. Usuallyu; ¢ takes a form of eéD-dimensional real-valued vector, i.e.
UG € apb.

Reproduction in DE creates a temporary population of tregdters. For each
solutionu; g a corresponding trial vectof g is obtained by mutation and crossover
operators. The mutation operator generates a mutant vggtoaccording to the
equation: '

Yig = UaG+F * (UpG — UcG), ©)
whereF € [0,2] is a user-supplied parameter called amplification factdraah,c €
1,...,Sare randomly selected in such way thgt b £ c # .

The final trial vectory; g is obtained by the crossover operator, which mixes
the mutant vectory; ; with the original vectoruic. Let us assume thatic =
(U1iG,WiG,---,Upic). Each elemeny; g (where j =1,...,D) of the trial vector
Yi.c Is generated as:

- if rnd(j) <CRorj=e

Uj,c oOtherwise

22

Learning Finite Gaussian Mixtures Using Differential Eutbn

whereCR € [0, 1] is another user-supplied parameter called crossoverrfantj)
denotes a random number from the uniform distributiorjG@@] which is generated
independently for each ec 1,...,Sis a randomly chosen index which ensures that
at least one element of the trial vectpt; comes from the mutant vectygf .

The remaining two phases of DE generation are computatidheofitness for
all members of the trial population and selection. Seleciiodifferential evolution
is very simple. The fitness of each trial solutigrs is compared to the fitness of
the corresponding original solutiam . The trial vectory; ¢ survives into the next
iteration becoming g1 if its fitness is better. Otherwisg is discarded and; g1
is set tou; g

3.2 Choice of control parameters= and CR

The parameter$- and CR have a significant impact on convergence speed and
robustness of the optimization process. The choice of thgiimal values is an
application-dependent task. In [18] the valles- 0.5 andCR= 0.9 were suggested.

F andCRmay be also selected using a trial-and-error approach hwbiguires many
optimization runs and may be infeasible in many practicaliaations.

To alleviate the problem of parameter tuning, Brest et glpféposed a self-
adaptation method fdf andCR. In this method, amplification and crossover factors
evolve together with population members. Each member obdgtle trial and target
populations is augmented with its own amplification factod arossover factor. Let
us denote byR'; and Fi?’G the amplification factors associated with the vecigrs
andy; g, respectively. Similarly, let us denote b}R‘jG andC R-VG the crossover factors
associated with the vectousg andy; g, respectively. ’

Before the mutatioff’ is generated as:

Fin _ {II;:— rnd, «U if rndy '< T2 ' %
G otherwise

rnd; andrnd; are uniform random values frof@, 1], t; € [0,1] is the probability
of choosing new random value Ef’G, L andU are the parameters determining the
range forR;.

Similarly to s, CR/; is generated before the mutation as:

rnds if rndg <12
CR. = , 8
Re {CF{G otherwise (®)

23

Wojciech Kwedlo

wheret; € [0,1] is the probability of choosing new random vaIue(IFﬁ-‘tG.

Fif’G obtained by (7) is used to generate the mutant vector acuptdi(S).CRV_G
obtained by (8) is used to generated the trial vector acagridi (6). The amplification
and crossover factors undergo selection together withcaged vectors. If in the
selection process; g1 is set toy; g then Fi,G L1 Is set toFi?’G andCRfG L1 s setto
CR/¢. OtherwiseF'; ; is set toF;; andCR's, ; is set toaCRs.

It may seem that self-adaption BfandCRintroduces another four parameters
(L, U, 141, T2) which must be fine-tuned by the user by means of the trial-and
error method. However, Brest et al. [4] used fixed values es¢hparameters in
all experiments and obtained promising results. Followimgr suggestion in our
experiments we used = 1, = 0.1. L andU were set to M5 and 035 respectively,
which ensured the’; € [0.05,0.4].

The original method of Brest et. al. self-adapted both patarsF andCR It
was tested on benchmark numerical optimization problerits,dimensionD < 30.
However, our preliminary experiments indicated, that @lged poor results, when
applied to the much more difficult problem of Gaussian migti@arning. Therefore
in the paper we propose to use a new approach, in whislself-adapted in a manner
described in [4], whereaBR s set to a constant value close to 0 according to the
following experimentally developed formul&R= 2/D, whereD is the dimension
of a population element.

3.3 The fithess function

The fitness function used by the DE-dog p(X|©), where logp(X|©) is defined by
(4). Because of the minus sign, the algorithm is configureditomize the fitness.

3.4 Encoding of the parameters of a Gaussian mixture model bghromosomes

In order to apply a DE algorithm to the problem of Gaussiantanec learning we
have to work out a method for encoding mixture parametersby{3yeal-valued
vectors (chromosomes). The encoding of mixing probabditi,,ao,...,ay and
mean vectorsly, b, ..., My IS very straightforward. The mixing probabilities (real
values) and all the elements of mean vectdid ¢eal values) are directly encoded in
a chromosome using the floating-point representation.

Unfortunately, the elements of covariance matrices camm@oencoded in a
similar way. A covariance matri¥,, m=1,...,M of each Gaussian component
of a mixture (1) must be a symmetric positive-definite matrig. for each non-
zerox € 09 x"Zx > 0 [11]. Since, eaclEy, is symmetric, only itsd(d + 1)/2

24

Learning Finite Gaussian Mixtures Using Differential Eutbn

diagonal and over-diagonal elements need to be encodede\dowf we encoded
these elements directly, the purely random crossover andtim operators of DE
would not preserve positive-definiteness of the covarianatices2,. In almost all
cases the matrices encoded in a trial vegtey would not be positive-definite and
thus could not be interpreted as covariance matrices.

To overcome the above obstacle, the covariance matricegrameded in a
chromosome using their Cholesky decomposition [16]. Easfagance matrix,,
m=1,...,M can be expressed as a product of a lower triangular miagriand its
transpose:

Tm=LmL}. 9)

The diagonal elements of the lower triangular matrp must be strictly positive.
This condition is much easier to satisfy during the DE evotuytthan the positive-
definiteness of the covariance matkiy. For that reason we have chosen to encode
elements oL, rather thark,, in a chromosome. To ensure the positive-definiteness
of X, we inspect the trial vectoy; g and check each diagonal elementgf. If the
value of the diagonal element is lower than zero, it is regdaa the trial vectoy; ¢

by its absolute value.

4. Experiments

4.1 Experimental setup

In the experiments we used three versions of DE differindhbymhethod of parameter
control:

— Aversion using fixed values of the parameters f.e: 0.5,CR= 0.9 as proposed
in [18]) during the run of the algorithm.

— A version using self-adaptivie andCR[4] described in the subsection 3.2.

— A version using self-adaptivié only.

Additionally, the EM algorithm [13], which is the standardethod for estimation of
the parameters of the Gaussian Mixture Model was used incimparison.

In all the experiments the population sBwas set to 32. All the results reported
in this section are the average over 30 independent rung waimdom starting
conditions. The EM algorithm was initialized using a randorathod described in
[7].

All the algorithms were implemented in the C++ language adpiled by the
Intel C++ version 10.1 compiler using optimizing option®%--ipo -xT -fno-alias).

It was run on a system with two quad-core Intel Xeon 5355 (Z6&) processors.

25

Wojciech Kwedlo

The comparison of the DE algorithms was performed on thelegdl time basis:
all three versions of DE were were allocated 200 seconds &f @iae, and the
final result was the fitness of the best individual in the papah obtained after 200
seconds of evolution.

4.2 Synthetic datasets

The first example uses 900 samples from 3-component bigamatture from [7].
For this examplen; = 0, = 03 = 1/3, iy = [0,—2]7, o = [0,0]", y3 = [0,2]" and
all three covariance matrices are equal= 3, = 53 = [3 %].

Fig. 1a shows the true mixture and 900 samples of it, wher&nslb shows
the mixture estimated by the DE with self-adaptive(mixtures estimated by the
other two versions were almost identical). It can be seat,ttte DE algorithm has
correctly identified the mixture parameters. Fig. 2 showesdbnvergence of three
versions of DE. The curves represent the fithess of the bdstidnal in the DE
population plotted as a function of the number of fithess tionccalls performed
by the algorithms. For that dataset all the algorithms cayae towards global
minimum, although the DE with self-adaptie converged slower than the other
two methods.

Fig. 1. Estimation of parameters of 3-component bivariate mixtliree solid ellipses are level-curves
of each component: a) true mixture b) mixture estimated bynixk self-adaptive-.

In the second example, the mixture components overlap. Twtbem share
a common mean, but have different covariance matrices. DB@ $amples were
taken from the mixture with following parameters; = o, = a3 = 04 = 0.25 and

26

Learning Finite Gaussian Mixtures Using Differential Eutbn

3160 T T T

SehJ adaptive- I andCR '

3150 |- Self-adaptivedc - - — -
F=05CR=09 -------

3140 |- -

3130
3120

3110

—logp(X|©)

3100

3090

3080

3070 . | | | | | |
0 2 4 6 8 10 12

Number of fithess function calls<(10P)

Fig. 2. Convergence of three versions of DE for the 3-componenturéxfThe curves are average over
30 independent runs.

W=t =[-44" =22, p=[-1,-6" andZ; = [%] Zo=[$ ‘62] , 23 =

[4 5], Za= 24 2] Fig. 3a shows the true mixture and 1000 samples of i,
whereas Fig. 3b shows the mixture estimated by DE with skdptveF. Once again

it can be seen, that the algorithm has correctly identified rttixture parameters.
Fig. 4 shows the convergence of three variants of DE. Thimel@was clearly too
difficult for the DE with constant vales &f andCRas it was unable to find the global
minimum of the log-likelihood. It can be also seen, that DEwself adaptivéd- and
CRconverged slightly faster than DE with self-adaptivenly.

4.3 Real-life dataset

In the last experiment, the well-known iris dataset (150gas)d = 4) [8] describing

iris flowers from the Gaspé peninsula was used. This dateaebbtained from the
UCI machine learning repository [1]. The iris flowers delsed in this dataset are
divided into three classes. For that reason we hW4ed3. Of course, since itis a real-
life, not synthetic dataset, the underlying probabilitysi€y functions are not known
and could not be visualized. Therefore Fig. 5 shows only théure estimated by

27

Wojciech Kwedlo

a) b)

10 T T T 10

-10 n L -10

155 B 0 5 10 155 B 0 5 10

Fig. 3. Estimation of parameters of 4-component bivariate Gangsiature with overlapping compo-
nents. The solid ellipses are level-curves of each comgoagirue mixture b) mixture estimated by
DE with self-adaptive-.

4100 - .

I Self aldaptiveié andCIl?
Self-adaptivdF - - - -
F=05CR=09 -------

4080 F: -
4060 f:

4040 =

—logp(X|©)

4020

4000

3980 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

Number of fithess function calls<(10%)

Fig. 4. Convergence of three versions of DE for the 4-componenturéxtith overlapping components.
The curves are average over 30 independent runs.

the DE with self-adaptiv&. Since iris is four-dimensional dataset, we used principal
component analysis (PCA) [11] to project data and the egtidhanixture on the first

28

Learning Finite Gaussian Mixtures Using Differential Eutbn

two principal components. Fig. 6 shows the convergence rektlversions of DE.
This experiment clearly demonstrated that fast convergénthe initial phase of the
evolution does not necessarily lead to best final solutisth@ slowest algorithm (i.e.
DE with self-adaptive=) found the solution with the lowestlog p(X|©).

15

0.5F

05

Fig. 5. iris data (projected on two principal components) and thetuné estimated by the DE with
self-adaptive-. The solid ellipses are level-curves of each component.

4.4 Summary of the experiments and the comparison with the EMilgorithm

The experiments are summarized by the Table 4.4, which shibwes final
—logp(X|®) obtained by the DE algorithms after 200 seconds of evoluthuf
ditionally, the last column of the table shows the resultoi#d by the EM algorithm
[13]. The results suggest the following conclusions:

— All versions of DE outperform the local search algorithm (EMowever it
should be noted that EM algorithm is much faster than DE,irequmuch less
than one second (on our hardware) to converge.

— DE with self-adaptivé= only outperforms two other versions of DE.

29

Wojciech Kwedlo

195 T T

Self a{daptiveF arlwdCR
Self-adaptivec - — — -
F=05CR=09 -------

190

185 RN R I I -

—logp(X|©)

O

175 | | | | | |
0 5 10 15 20 25 30

Number of fithess function calls<(10P)

Fig. 6. Convergence of three versions of DE for the iris dataset. dlnrwes are average over 30
independent runs.

5. Conclusions

In this paper an application of DE to the problem of Gaussi&tiure learning was
described. To avoid a problem with infeasibility of chrorooses we proposed a novel
encoding method, in which covariance matrices were encadid their Cholesky
decomposition. In the experiments three versions of DEgmiilg by the method of
parameter control, were examined and compared to the EMitigo

The results of our study allow us to recommend DE with se#pdige F over
the other two versions and the EM algorithm. Although it cenges slowly in the
initial phase of evolution, it is able to find solutions notra® (and sometimes better,
if the problem is difficult enough as it was demonstrated lgyakperiment with the
iris dataset) than other versions of DE.

There are several possible directions of future work. Onehein is the
development of a memetic algorithm combining DE with fastlcsearch procedure
(e.g. the EM algorithm). Such hybrid method would be ablestain the advantages
of both approaches i.e. the fast convergence of EM and tHityalimd a global
optimum of DE.

30

Learning Finite Gaussian Mixtures Using Differential Eutbn

Table 1. The final —log p(X|©) values obtained by the four tested methods. The resultsvarage
over 30 independent runs.

Dataset F = 0.5,CR= 0.9|Self adaptivd= andCR|Self adaptivd=| EM
3-component mixture 3074.1 3073.8 3073.8 |3148.8
4-component mixture 4008.2 3997 3997 4085.4

iris 184.93 182.14 180.03 |187.58

Another direction of future research is related to the dgwelent of a parallel

version of our approach. The most time-consuming step ddldarithm is computa-
tion of the fitness function since it requires tWliegpasses over the training set. It would
be quite straightforward to parallelize this step by corentty computing the fithess
of the different population members on different processdra parallel system.

References

[1]
[2]

3]
[4]

[5]
[6]

[7]

[8]

A. Asuncion and D. J. Newman. UCI machine learning refoogj 2007.
Hans-Georg Beyer and Hans-Paul Schwefel. Evolutioateties — a compre-
hensive introductionNatural Computing1(1):3-52, 2002.

C. M. Bishop. Pattern Recognition and Machine Learnin@pringer-Verlag,
2006.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zume$elf-adapting
control parameters in differential evolution: A comparatstudy on numerical
benchmark problems. IEEE Transactions on Evolutionary Computation
10(6):646—657, 2006.

U. K. Chakraborty, editorAdvances in Differential EvolutiorSpringer, 2008.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likebod from
incomplete data via the EM algorithrdournal of the Royal Statistical Society.
Series B39(1):1-38, 1977.

M.A.T. Figueiredo and A.K. Jain. Unsupervised learniofyfinite mixture
models. IEEE Transactions on Pattern Analysis and Machine Inteltige
24(3):381-396, 2002.

R. A. Fisher. The use of multiple measurements in taxasgroblems. Ann.
Eugenics7:179-188, 1936.

[9] T. Hastie and R. Tibshirani. Discriminant analysis byuSsian mixtures.

Journal of the Royal Statistical Society. Series B (Methagloal), 58(1):155—
176, 1996.

31

Wojciech Kwedlo

[10] A. K. Jain and R. C. DubesAlgorithms for Clustering Data Prentice-Hall,
1988.

[11] R.A. Johnson and D.W. WichernApplied Multivariate Statistical Analysis
Prentice Hall, 6th edition, 2007.

[12] A. M. Martinez and J. Vitria. Learning mixture modelsng a genetic version
of the EM algorithm.Pattern Recognition Letter21(8):759—-769, 2000.

[13] G. McLachlan and D. PeeFinite Mixture Models John Wiley and Sons, 2000.

[14] Z. Michalewicz.Genetic Algorithms + Data Structures = Evolution Programs
Springer Verlag, 1996.

[15] F. Pernkopf and D. Bouchaffra. Genetic-based EM atgorifor learning
Gaussian mixture modellEEEE Transactions on Pattern Analysis and Machine
Intelligence 27(8):1344-1348, 2005.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Rarihery. Numerical
Recipes: The Art of Scientific ComputingCambridge University Press, 3rd
edition, 2007.

[17] P. Pudil, J. Novovicova, N. Choakjarernwanit, and Xtl&i. Feature selection
based on the approximation of class densities by finite mestof special type.
Pattern Recognition28(9):1389-1398, 1995.

[18] R. Storn and K. Price. Differential evolution - a sim@ed efficient heuristic
for global optimization over continuous spacésurnal of Global Optimization
11(4):341-359, 1997.

[19] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMigrithm for
mixture modelsNeural Computation12(9):2109-2128, 2000.

[20] J. J Verbeek, N. Vlassis, and B. Krose. Efficient greeziyriing of Gaussian
mixture modelsNeural Computation15(2):469-485, 2003.

UCZENIE SKO NCZONYCH MIESZANIN
ROZKtADOW NORMALNYCH PRZY POMOCY
ALGORYTMU EWOLUCJI RO ZNICOWEJ

Streszczenie W artykule rozwaono problem uczenia parametréw &kaonej mieszaniny
wielowymiarowych rozktadéw normalnych. Zaproponowanaevaanetode uczenia oparta
na algorytmie ewolucji rnicowej. W celu unikniecia probleméw z niedopuszczatia
chromosoméw algorytm ewolucji zdicowej wykorzystuje nowa reprezentacje, w ktérej
macierze kowariancji sa reprezentowane przy pomocy dpkagtji Cholesky’ego. W
eksperymentach wykorzystano trzy wersje algorytmu ewjoldznicowe] r&niace sige

32

Learning Finite Gaussian Mixtures Using Differential Eutbn

metoda doboru parametrow. Wyniki eksperymentow, pragpdzonych na dwoch syn-
tetycznych i jednym rzeczywistym zbiorze danych, wskazag, zaproponowana metoda
jest w stanie poprawnie identyfikowgarametry modelu. Metoda ta osiaga réveriepsze
wyniki niz klasyczyny algorytm EM.

Stowa kluczowe: mieszaniny rozktadéw normalnych, ewolucjanicowa, algorytm EM

Artykut zrealizowano w ramach pracy statutowej S/W1/2/08

33

