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Abstract: This paper presents a new version of Routes Generation xMatgorithm,
called Routes Generation Matrix Improved Algorithm (RGNIJ&or determining routes
with optimal travel time in public transport network. The timed was implemented and
tested on the real public transport network in Warsaw cityisThetwork was completed
with walk links and therefore resultant routes are more forakcand can perform various
users’ preferences. Effectiveness of the improved methasl @ampared in two aspects:
time complexity and quality of results, with another twoaithms - previous version of
Routes Generation Matrix Algorithm (RGMA) and Routes Gatien Genetic Algorithm
(RGGA). RGMA and RGGA algorithms were described in previauthor’s papers [9,10].

Keywords: public transport network, time-dependent shortest pattimal routes, genetic
algorithm

1. Introduction

The shortest path problem is a core model that lies at thet tedanetwork
optimization. It assumes that weight link in traditionatwerk is static, but is not
true in many fields such as Intelligent Transportation SystéTS) [16]. The optimal
path problems in variable-time network break through timétlof traditional shortest
path problems and become foundation theory in ITS. The nalpm®blems make
the optimal path computing to be more difficult than finding ghortest paths in
networks with static and deterministic links, meanwhilgagithms for a scheduled
transportation network are time-dependent.

A public transportation route planner is a kind of ITS andviote information
about available public transport journeys. Users of suskesy determine source and
destination point of the travel, the start time, their prefees and system returns
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as a result, information about optimal routes. In practjmeblic transport users’
preferences may be various, but the most important of themaaminimal travel
time and a minimal number of changes (from one vehicle toramtFinding routes
with minimal number of changes is not a difficult problem, lgenerating routes
with minimal time of realization, on the base of dynamic tiatdes, is much more
complexity task.

Moreover, standard algorithms considered graphs with ame d&f links (undi-
rected or directed) which have no parallel arcs. Graph wigdels a public
transport network includes two kinds of edges: directedslinvhich represent
connections between transport stops and undirected arosspond to walk link
between transport stops.

Additionally, with each node in a graph which represents amdportation
network, is concerned detail information about: timetabt®ordinates of transport
stops, etc. This information is necessarily to determinéghte of links during
realization of the algorithm.

Besides, standard shortest path algorithms generate aelptimal path, but
methods used in journey planners must return few altematptimal paths. These
four differences between standard shortest path problemnra@uming problem in
public transportation network cause that time complexitglgorithms which solve
this problem may be very high.

Many algorithms has been developed for networks whose eeéights are not
static but change with time but most of them take into comsitten a network with
only one kind of link, without parallel links and returns grdne route. Cooke and
Halsey [5] modified Bellman’s [3] "single-source with pdsgi negative weights"
algorithm to find the shortest path between any two vertioea time-dependent
network. Dreyfus [6] made a modification to the standard ®ig algorithm to cope
with the time-dependent shortest path problem. Orda and R8ihdiscussed how
to convert the cost of discrete and continuous time networksa simpler model
and still used traditional shortest path algorithms for tilee-dependent networks.
Chabini [4] presented an algorithm for the problem that timeéiscrete and edge
weights are time-dependent. Other algorithms deal withirfitndhe minimum cost
path in the continuous time model. Sung [14] et al. gave alaimesult using a
different version of cost and improved the algorithm’s édficy. Ahuja [1] proved
that finding the general minimum cost path in a time-dependetwork is NP-
complete and special approximation method must be usedve tis problem.

The RGMA [9] and RGGA [10] are approximation methods whicheatesk
routes with optimal travel time. Like tHeshortest paths algorithm [11], since these
methods generate multiple "better" paths, the user canrhave choices from where

6



An Improved Approximation Algorithm for Optimal Routes Generation in Public Transport Network

he or she can select based on different preferences sucliabhsanmount of fares,
convenience, preferred routes and so on.

RGMA realizes label-setting strategy [2] for constructimatl routes and uses
special matrices which are applied as heuristics in thigritgn. RGGA algorithm is
a genetic algorithm [12] which starts with a population afdamly generated initial
set of routes and tries to improve individuals in populatiynrepetitive application
of selection and crossover operators. Both algorithm wasemented and tested
on realistic data - from Bialystok city public transport wetk [10]. Computer
experiments had shown that genetic algorithm (RGGA) géesnautes as good as
matrix based algorithms (RGMA), but significantly faster.

In this paper author of RGMA presents a new improved versidhis method
called Routes Generation Matrix Improved Algorithm (RGMI#hich has lower
time-complexity than RGMA and generates more optimal mutan RGMA and
RGGA. In this paper next section includes definition of oplirroutes generation
problem and description of public transport network modelthe third section
author presents common idea of RGMA and RGMIA and illusgatdy a simple
example. Section 4 is concerned on detail description térdihces between RGMIA
and RGMA. Subject of Section 5 is the comparison of effectdgs of RGMIA,
RGMA and RGGA methods in two aspects: time complexity andityuaf results.
This comparison is based on experimental results which perermed on realistic
data. The paper ends section with some remarks about fuiore am possibilities
of further improving of RGMIA.

2. Network Model and Problem Definition

A public transportation network in our model is represerdsd bimodal weighted
graphG = (V,E) [8], whereV is a set of nodesk is a set of edges. Each node
in G corresponds to a certain transport stop (bus, tram or m&im etc.), shortly
named stop. We assume that stops are represented with raufrirar 1 ton. The
directed edgdi, j,l,t) € E is an element of the sdi, the line numbet connects
the stop number as a source point and the stop humbpeas a destination. One
directed edge called transport link corresponds to oneilititysof the connection
between two stops. Each edge has a weighhich is equal to the travel time (in
minutes) between nodesnd j which can be determined on the base of timetables.
A set of edges is bimodal because it includes, besides dirdiciks, undirected walk
links. The undirected edgf, j,t} € E is an element of the s, if walk time in
minutes betweenand j stops is not greater thaimit,, parameter. The value &ifmit,,
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parameter has a big influence on the number of network lirdssjtly of graph). The
t value for undirected edgf, j} is equal to walk time in minutes betweermnd |
stops. We assume, for simplification, that a walk time is mheiteed as an Euclidian
distance between stops.

A graph representation of public transportation netwodhigwvn in Fig. 1. Itis a
very simple example of the network which includes only nitops. In the real world
the number of nodes is equal to 3500 for the city with aboutlfianiof inhabitants.

Formal definition of our problem is the following. At the inppwe have: graph
of transportation networkjmetable(l) - times of departures for each stops and line
I, source point of the travgb), destination point of the travédl), starting time of the
travel (time, ), number of the resultant patfis), maximum number of changésiax;)
and limit for walk links (limit,). At the output we want to have the set of resultant
routes, containing at moktquasi-optimal paths with minimal time of realization (in
minutes) with at mogtnax; changesmax;, parameter takes into account only transfers
from one vehicle to another (not from vehicle to walk or irsedy).

Weight of transport link(i, j,I,t) is strongly dependent on the starting time
parameter(time,) andtimetable(l) which can be changed during the realization of
the algorithm. The value of(i, j,1,t) link is equal to the result of subtraction: time
of arrival for linel to the stopj and start time for stop- timg.

Fig. 1. Representation of a simple transportation network (dsffierstyles of lines mark different
transport links; dot lines mark walk links)
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3. The Common ldea of RGMA and RGMIA

RGMA and RGMIA algorithms of determining paths with the nmial travel time
are based on label-setting method of the shortest pathsagieme In order to find
optimal paths, fokk > 1, it is important to choose different routes throughout the
network [15]. It can be realized by labeling nodes and edgéy cemoval of a node
or an edge. Because it is easier to implement the labelingritighs than the path
deletion algorithms for the transportation network, thgoathm described in this
section is based on the label-setting technique [2].

The idea of both methods is the same. Before first iteratidheglgorithm we
must labeled each node in the network. The initial value leélldmarked ast) of the
nodeo is equal tok (et(0) = k) and 0 for other nodes. In first step of the method we
find the closest nodeto the start poinb. Nodeu is the closest to nodeiff H(0) = u,
whereH is an heuristic which determines the choice of closest ndtis heuristic
is different in RGMA and RGMIA. The label of the closest nadés increasing at
that moment. Next, we add to the gra@hnew arcs: fromo to each node which
incidences with node. The weightt,, of the new arc is equal tig, + ty. Next step
executes as the same way as the first step. The algorithm sibes the label of the
end nodd is equal tok or there is no nodes closestdaoWe havek (or less thark if
there is ndk paths fromo to d in network) paths frono to d as a result of the method.

The common idea of RGMA and RGMIA is written in the psedocodenf
presented bellow. Line number six in this pseudocode resldifferent heuristics
H for RGMA and RGMIA which are detail described in Section 4.

Pseudocode Commonl dea(G o, d, timetabl es, k)

1. Begin

2 for i:=1to n do et(i):=0;

3 et (0):=k;

4 while et(0)<k do

5: Begin

6: u:=H(o);

7 if u not exist then break;

8: if u=d then return route fromo to d;
9: add new arcs (o,v,t) to G for each node v which incidences with u
10: et (u):=et(u)+1;

11: End

12: End;

In Fig. 2 and Fig. 3 we illustrate first step of realization @iamon idea of
RGMA and RGMIA on the example network presented in Fig. 1hla presentation
we assume that = H (o) iff there is a link fromo to u andet(u) is minimal in first
order and travel time froro to u is minimal in second.
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Fig. 2. Choice of the closest node in first step of pseudocode Conueantealized on network
presented in Fig. 1.

If start node is equal to 1 and destination node is equal toefi the closest
node in network presented in Fig. 1 is equal to 3, becausdshtde has a minimal
value of travel time from node 1. Narrowly, there are five §irtetween nodes 1
and 9. Four transport linkg1,2,20),(1,2,25),(1,3,10), (1,3,25) and one walk link
(1,2,20) (the number of line is omitted for simplification). The algbm chooses
node 3 as the closest node because tranport(lln8,10) has the smallest travel
time.

Fig. 3. Addition new arcs to the network in second step of RGMIA-RGké#alized on network in Fig.
1
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In the second step of the algorithm seven new arcs are add#ee tgraph:
(1,5,39),(1,5,35),(1,6,14),(1,6,22),(1,6,29),(1,6,39). The travel timet for new
link (1,u,t) is equal to the sum of travel time from 1 to 3 travel time fromo3ut
There are twelve links begining in node 1 in the graph now.

The basic difference between RGMA and RGMIA rests on theisétH which
determines conditions of the closest node choosing. Wd detribe this difference
in the next section.

4. Differences between RGMA and RGMIA

To detail present differences between RGMA and RGMIA we naadine special
matrices used in definition ¢d heuristic in both methods:

1. Q=d[i, jli,j=1..n - minimal number of changes matrig[i, j] element is equal
to the number of minimal changes in route from sidp stopj. The algorithm
which determine$) matrix is detail presented in [8].

2. D =d[i, j]i,j=1.n - minimal number of stops matrixl[i, j| element is equal to the
minimal number of stops in route from stop stopj. We can calculat® matrix
using standard Breath First Search algorithm for each maoistart stop in the
network.

3. Trh = tnli, jli,j=1..n - minimal travel-time in rush hours matrikhli, j] element is
equal to the minimal travel time in rush hours in route frompstto stopj. Rush
hours are specific for a given city (from 7:00 a.m. to 10:00.and from 03:00
p.m. to 07:00 p.m. for example in Warsaw). We can obigirmatrix on the base
of fragment of timetables which concerned on rush hours.

4. Toh = tonli, j]i,j=1.n - minimal travel-time outside of rush hours matrth(i, j]
element is equal to the minimal travel time outside of roustrk in route from
stopi to stopj. We can determin&,, matrix on the base of fragment of timetables
which concerned on hours outside rush.

In practical implementation of RGMIA it is possible to detene more than two
kinds of minimal travel-time matrix, dividing twenty-fourours into parts, taking
into consideration an intensity of traffic - specific for agvcity. It's very important
that we can determine each of above matrix only one time -rbdfost execution
of RGMA or RGMIA. Therefore the time-complexity of algoritis which calculate
these special matrices doesn’'t have an influence on timglesity of RGMA and
RGMIA.

Now, we can defineH heuristics for our methodsHrgma and Hgromia.

HRGMA(S) = uliff:
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1. {o,u,t} € E andet(u) is minimal in first order and

2. value oft + D[o,u] is minimal or differs from minimal not greater than(e is a
parameter of closeness aa@jiven on the input of the algorithm) in second order
and

3. Q[o,u] is minimal in third order.

HRGMIA(S) = uiff:

1. {o,u,t} € E andet(u) is minimal in first order and

2. valuet + Trplo,u] is minimal or differs from minimal not greater tham if
parametetime, belongs to rush hours or valtie- Ton[0,u] is minimal or differs
from minimal not greater thaniif parametetime, doesn't belong to rush hours)
in second order and

3. Q|o,u] is minimal in third order.

Intuitively Hramia heuristic may be a better heuristic thelgua because of
T:h andTgn matrices are time-dependent and give information aboueddsund of
travel time not only for first link in route but for a whole rautMatrix D used in
Hrema is time-independent and therefore we can choose worse (thRIGMIA)
closest node in each step of RGMA. This intuitively obseéoratvas confirmed by
experimental results on real data.

5. Experimental Results

There were a number of computer tests conducted on real ddtansportation
network in Warsaw city. This network consists of about 42€ips, connected by
about 240 bus, tram and metro lines. Values of common paesséir RGMA,
RGMIA and RGGA were followingmax, = 5, k= 3, limit,, = 15. The value ofimit,,
is very important because it influences the density of ndkwbhe bigger value of
limity, the more possibilities of walk links in a network. Densitynetwork is of a
key importance for time-complexity of algorithms. The paeder of closenessin
RGMA and RGMIA was equal to 5 minutes. This parameter alsahaafluence on
quality of results and time-complexity of these methodse Blgger value of, the
more possibilities of choice of closest node. We perforniedd kinds of tests. We
examined routes from the centre of the city to the periphéhe city (setC — P),
routes from the periphery of the city to the centre of the (sigtP — C) and routes
from the periphery of the city to the periphery of the cityt(Be- P). Each of these
sets includes 50 specification of firg) (and last ¢l) stops in the route which are
difficult cases for each algorithm. First matter is a londgatise fromotod (in P—P
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set), the second is a high density of the networbk or d localization (inC — P and
P —C sets).

Selected results of tests for 10 chosen specificatiaranidd for each examined
set of routes, generated by RGMIA, RGMA and RGGA, are preskem Tab. 1, 2,
3. For each of algorithm we show in these tabelsandd specification, minimal
travel-time fork resultant routes (RGMIA-t,RGGA-t, RGMA-t), number of cluyas
for route with minimal travel-time (RGMIA-ch, RGGA-ch, RGMch).

Table 1. The results for routes from sBt—C; times = 7 : 30;0 = Skolimowska 02

d-destination stop RGMIA-t|RGGA-t|RGMA-t|RGMIA-ch|RGGA-chRGMA-ch
Pl.na Rozdrau 01(al. Ujazd.) 57 59 61 2 2 2
Pl.Konstytucji 04(Pigkna) 62 63 71 2 2 2
GUS 08(Wawelska) 60 62 66 3 1 1
Dw. Centr.178wietokrz.) 64 66 69 2 1 1
Mennica 01(Grzybowska) 79 80 81 3 3 3
Ordynacka 02(Nowyswiat) 62 66 64 2 2 2
Siedmiogrodzka 02(Grzybowska) 78 80 82 3 3 3
Miynarska 04(Mtynarska) 71 79 81 3 3 3
Nowy Swiat 04Swietokrzyska) 65 67 69 2 2 2
Emilii Platter(P£N. Dw. Central 71 73 73 3 3 3

Table 2. The results for routes from s€t— P; times = 15 : 30;0 = Mennica 01 (Grzybowska)

d-destination stop RGMIA-t|RGGA-tRGMA-t|RGMIA-ch|RGGA-cHRGMA-ch
Plantanowa(Mtochow) 104 112 124 3 4 4
Ogodowa 01(Gtoskow) 82 83 97 3 3 3
Kepa Okrzewska 01 64 84 88 3 4 4
Dziechciniec-Sklep02 103 86 88 3 3 3
Waska(Jézefow) 81 81 84 2 3 3
Struga 02(Marki) 63 64 63 2 2 2
Stokrotki 02(Nieporet) 75 78 83 3 2 2
Orzechowa 02(Lopushaka 35 37 44 3 3 2
Dtuga 02(Dawidy) 67 73 84 3 3 3
3 Maja(Legionowo) 66 68 71 3 2 3

All results presented in above tables are confirmation ofigpaality of routes
of RGMIA algorithm because the values of travel-time for best and worst route
are significantly less than for other comparable method.e@dly, for P—C set, in

13



Jolanta Koszelew

Table 3. The results for routes from sBt— P; times = 7 : 30;0 = Struga 01(Marki)

d-destination stop RGMIA-t|RGMA-t|RGGA-tRGMIA-ch|RGMA-ch RGGA-ch
Plantowa(Pruszkéw) 76 88 91 3 4 4
Ogrogowa 01(Gtoskow) 117 137 149 4 4 4
Kepa Okrzewska 01 103 123 138 5 5 5
Dziechciniec-Sklep 02 99 149 181 3 4 5
Mennica 01(Grzybowska) 79 80 81 3 3 3
Waska(Jozeféw) 96 108 111 3 4 4
Stokrotki 02(Nieporet) 77 84 93 0 0 4
Orzechowa 02(Lopushaka 75 78 81 4 5 5
Diuga 02(Dawidy) 105 106 120 5 4 4
3 Maja(Legionowo) 82 87 96 3 4 4

29 cases ob — d specification RGMIA generates the best routes, in 17 cas€sRG
was the best and only in 4 cases RGMA resultant routes weleette ForP — C set,

in 26 of cases ob — d specification RGMIA generates the best routes, in 21 of cases
RGGA was the best and only in 3 cases RGMA resultant routes tiner best. For

P —C set, in 27 of cases af — d specification RGMIA generates the best routes, in
23 of cases RGGA was the best and only in 0 cases RGMA resuttaigts were the
best.

The last experiment was focused on comparison of time codqtyplef algo-
rithms. The results are presented in Fig. 4.

In this experiment we tested examples of routes with a minimanber of stops,
between 22 and 47. On the horizontal axis there are pointesepting the minimal
number of stops on a route. These values were computed asila gbstandard
BF Sgraph search method and they are correlated with difficdltheroute. On the
vertical axis there is marked time of execution in ms (prece$entium 3.0 GHz).
Each possible route with a given number of the minimal nundiéyus stops was
tested by two algorithms at starting time at 7:30 a.m., wagk@ihe executing time of
algorithms was averaged over every tested routes. We cahatedRGMIA performs
in significantly shorter time than RGMA and insignificantlyah RGGA, specially
for routes with minimal number of stops greater than 35.

We can conclude on the base of our experiments that RGMIAngtresults
better then RGMA and even RGGA and is significantly fastentha previous
version.
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Fig. 4. The comparison of time-complexity of RGMIA, RGMA and RGGA

6. Conclusions

The author’s motivation was to try to improve the RGMA in twapacts: the quality
of resultant routes and time-complexity[10]. Computerakpents have shown that
RGMIA - improved version of RGMA performs much more betteartrRGMA and
significantly faster and is unexpectedly better than RGGBdth examined aspects.

Future work will be concentrated on testing RGMIA and RGGA aother
transport networks for big metropolises which have différsize, density and topo-
logy than network for Warsaw topology, such as Gornosladkia@® Przemyslowy
(Silesian Industrial Region). The transport network olthégion is very special
because it consists of many big cities (hubs) connected by rare fragment
of network. If tests show poor performance of RGMIA or/and ®& the new
heuristics must be added to the algorithm. The proposal pforement which can be
considered includes to the algorithm information aboutggephic location of start
and destination stops.
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POPRAWIONA WERSJA PEWNEGO
APROKSYMACYJNEGO ALGORYTMU
GENERUJACEGO OPTYMALNE TRASY W SIECI
TRANSPORTU PUBLICZNEGO

Streszczenie Artykut zawiera opis poprawionej wersji algorytmu genaaggo optymalne
trasy w sieci transportu publicznego uzupetnionej o linkisge, nazywanego przez autora
Routes Generation Matrix Improved Algorithm (RGMIA). Tyagenerowane przez RGMIA
sa optymalne pod wzgledem czasu realizacji i moga zadiedcinki piesze, co sprawia,
ze wynikowesciezki sa bardziej praktyczne i moga spebigkreslone preferencjeaytko-
wnikéw srodkéw transportu. Algorytm zostat zaimplementowanyzgpestowany na danych
realnej sieci transportowej. Efektywsiopoprawionej metody zostata poréwnana w dwoéch
aspektach: zloondci czasowej i jakéci wynikowych tras, z poprzednia wersja algorytmu
nazwana Routes Generation Matrix Algorithm (RGMA) oraz etoda genetyczna Routes
Generation Genetic Algorithm (RGGA). Algorytmy RGMA oraGBA zostaly opisane
w poprzednich artykutach autora [9,10].

Stowa kluczowe: siet transportu publicznego, problem najkrétszyadiezek zmiennych

w czasie, optymalne trasy, algorytm genetyczny
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