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Abstract: This paper presents a new version of Routes Generation Matrix Algorithm,
called Routes Generation Matrix Improved Algorithm (RGMIA), for determining routes
with optimal travel time in public transport network. The method was implemented and
tested on the real public transport network in Warsaw city. This network was completed
with walk links and therefore resultant routes are more practical and can perform various
users’ preferences. Effectiveness of the improved method was compared in two aspects:
time complexity and quality of results, with another two algorithms - previous version of
Routes Generation Matrix Algorithm (RGMA) and Routes Generation Genetic Algorithm
(RGGA). RGMA and RGGA algorithms were described in previousauthor’s papers [9,10].
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1. Introduction

The shortest path problem is a core model that lies at the heart of network
optimization. It assumes that weight link in traditional network is static, but is not
true in many fields such as Intelligent Transportation Systems (ITS) [16]. The optimal
path problems in variable-time network break through the limit of traditional shortest
path problems and become foundation theory in ITS. The new real problems make
the optimal path computing to be more difficult than finding the shortest paths in
networks with static and deterministic links, meanwhile algorithms for a scheduled
transportation network are time-dependent.

A public transportation route planner is a kind of ITS and provide information
about available public transport journeys. Users of such system determine source and
destination point of the travel, the start time, their preferences and system returns
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as a result, information about optimal routes. In practice,public transport users’
preferences may be various, but the most important of them are: a minimal travel
time and a minimal number of changes (from one vehicle to another). Finding routes
with minimal number of changes is not a difficult problem, butgenerating routes
with minimal time of realization, on the base of dynamic timetables, is much more
complexity task.

Moreover, standard algorithms considered graphs with one kind of links (undi-
rected or directed) which have no parallel arcs. Graph whichmodels a public
transport network includes two kinds of edges: directed links which represent
connections between transport stops and undirected arcs correspond to walk link
between transport stops.

Additionally, with each node in a graph which represents a transportation
network, is concerned detail information about: timetables, coordinates of transport
stops, etc. This information is necessarily to determine weights of links during
realization of the algorithm.

Besides, standard shortest path algorithms generate only one optimal path, but
methods used in journey planners must return few alternative optimal paths. These
four differences between standard shortest path problem and routing problem in
public transportation network cause that time complexity of algorithms which solve
this problem may be very high.

Many algorithms has been developed for networks whose edge weights are not
static but change with time but most of them take into consideration a network with
only one kind of link, without parallel links and returns only one route. Cooke and
Halsey [5] modified Bellman’s [3] "single-source with possibly negative weights"
algorithm to find the shortest path between any two vertices in a time-dependent
network. Dreyfus [6] made a modification to the standard Dijkstra algorithm to cope
with the time-dependent shortest path problem. Orda and Rom[13] discussed how
to convert the cost of discrete and continuous time networksinto a simpler model
and still used traditional shortest path algorithms for thetime-dependent networks.
Chabini [4] presented an algorithm for the problem that timeis discrete and edge
weights are time-dependent. Other algorithms deal with finding the minimum cost
path in the continuous time model. Sung [14] et al. gave a similar result using a
different version of cost and improved the algorithm’s efficiency. Ahuja [1] proved
that finding the general minimum cost path in a time-dependent network is NP-
complete and special approximation method must be used to solve this problem.

The RGMA [9] and RGGA [10] are approximation methods which generatesk
routes with optimal travel time. Like thek-shortest paths algorithm [11], since these
methods generate multiple "better" paths, the user can havemore choices from where
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he or she can select based on different preferences such as total amount of fares,
convenience, preferred routes and so on.

RGMA realizes label-setting strategy [2] for construct optimal routes and uses
special matrices which are applied as heuristics in this algorithm. RGGA algorithm is
a genetic algorithm [12] which starts with a population of randomly generated initial
set of routes and tries to improve individuals in populationby repetitive application
of selection and crossover operators. Both algorithm was implemented and tested
on realistic data - from Bialystok city public transport network [10]. Computer
experiments had shown that genetic algorithm (RGGA) generates routes as good as
matrix based algorithms (RGMA), but significantly faster.

In this paper author of RGMA presents a new improved version of this method
called Routes Generation Matrix Improved Algorithm (RGMIA) which has lower
time-complexity than RGMA and generates more optimal routes than RGMA and
RGGA. In this paper next section includes definition of optimal routes generation
problem and description of public transport network model.In the third section
author presents common idea of RGMA and RGMIA and illustrates it by a simple
example. Section 4 is concerned on detail description of differences between RGMIA
and RGMA. Subject of Section 5 is the comparison of effectiveness of RGMIA,
RGMA and RGGA methods in two aspects: time complexity and quality of results.
This comparison is based on experimental results which wereperformed on realistic
data. The paper ends section with some remarks about future work on possibilities
of further improving of RGMIA.

2. Network Model and Problem Definition

A public transportation network in our model is representedas a bimodal weighted
graph G = 〈V,E〉 [8], whereV is a set of nodes,E is a set of edges. Each node
in G corresponds to a certain transport stop (bus, tram or metro stop, etc.), shortly
named stop. We assume that stops are represented with numbers from 1 ton. The
directed edge(i, j, l, t) ∈ E is an element of the setE, the line numberl connects
the stop numberi as a source point and the stop numberj as a destination. One
directed edge called transport link corresponds to one possibility of the connection
between two stops. Each edge has a weightt which is equal to the travel time (in
minutes) between nodesi and j which can be determined on the base of timetables.
A set of edges is bimodal because it includes, besides directed links, undirected walk
links. The undirected edge{i, j, t} ∈ E is an element of the setE, if walk time in
minutes betweeni and j stops is not greater thanlimitw parameter. The value oflimitw
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parameter has a big influence on the number of network links (density of graph). The
t value for undirected edge{i, j} is equal to walk time in minutes betweeni and j
stops. We assume, for simplification, that a walk time is determined as an Euclidian
distance between stops.

A graph representation of public transportation network isshown in Fig. 1. It is a
very simple example of the network which includes only nine stops. In the real world
the number of nodes is equal to 3500 for the city with about 1 million of inhabitants.

Formal definition of our problem is the following. At the input we have: graph
of transportation network,timetable(l) - times of departures for each stops and line
l, source point of the travel(o), destination point of the travel(d), starting time of the
travel(timeo), number of the resultant paths(k), maximum number of changes(maxt)
and limit for walk links(limitw). At the output we want to have the set of resultant
routes, containing at mostk quasi-optimal paths with minimal time of realization (in
minutes) with at mostmaxt changes.maxt parameter takes into account only transfers
from one vehicle to another (not from vehicle to walk or inversely).

Weight of transport link(i, j, l, t) is strongly dependent on the starting time
parameter(timeo) andtimetable(l) which can be changed during the realization of
the algorithm. Thet value of(i, j, l, t) link is equal to the result of subtraction: time
of arrival for line l to the stopj and start time for stopi - timei.

Fig. 1. Representation of a simple transportation network (different styles of lines mark different
transport links; dot lines mark walk links)
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3. The Common Idea of RGMA and RGMIA

RGMA and RGMIA algorithms of determining paths with the minimal travel time
are based on label-setting method of the shortest paths generation. In order to find
optimal paths, fork ≥ 1, it is important to choose different routes throughout the
network [15]. It can be realized by labeling nodes and edges or by removal of a node
or an edge. Because it is easier to implement the labeling algorithms than the path
deletion algorithms for the transportation network, the algorithm described in this
section is based on the label-setting technique [2].

The idea of both methods is the same. Before first iteration ofthe algorithm we
must labeled each node in the network. The initial value of label (marked aset) of the
nodeo is equal tok (et(o) = k) and 0 for other nodes. In first step of the method we
find the closest nodeu to the start pointo. Nodeu is the closest to nodeo iff H(o) = u,
whereH is an heuristic which determines the choice of closest node.This heuristic
is different in RGMA and RGMIA. The label of the closest nodeu is increasing at
that moment. Next, we add to the graphG new arcs: fromo to each nodev which
incidences with nodeu. The weighttov of the new arc is equal totou + tuv. Next step
executes as the same way as the first step. The algorithm stops, when the label of the
end noded is equal tok or there is no nodes closest too. We havek (or less thank if
there is nok paths fromo to d in network) paths fromo to d as a result of the method.

The common idea of RGMA and RGMIA is written in the psedocode form
presented bellow. Line number six in this pseudocode realizes different heuristics
H for RGMA and RGMIA which are detail described in Section 4.

Pseudocode CommonIdea(G,o,d,timetables,k)
1: Begin
2: for i:=1 to n do et(i):=0;
3: et(o):=k;
4: while et(o)<k do
5: Begin
6: u:=H(o);
7: if u not exist then break;
8: if u=d then return route from o to d;
9: add new arcs (o,v,t) to G for each node v which incidences with u
10: et(u):=et(u)+1;
11: End
12: End;

In Fig. 2 and Fig. 3 we illustrate first step of realization of common idea of
RGMA and RGMIA on the example network presented in Fig. 1. In this presentation
we assume thatu = H(o) iff there is a link fromo to u andet(u) is minimal in first
order and travel time fromo to u is minimal in second.
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Fig. 2. Choice of the closest node in first step of pseudocode CommonIdea realized on network
presented in Fig. 1.

If start node is equal to 1 and destination node is equal to 9 then the closest
node in network presented in Fig. 1 is equal to 3, because of this node has a minimal
value of travel time from node 1. Narrowly, there are five links between nodes 1
and 9. Four transport links:(1,2,20),(1,2,25),(1,3,10), (1,3,25) and one walk link
(1,2,20) (the number of line is omitted for simplification). The algorithm chooses
node 3 as the closest node because tranport link(1,3,10) has the smallest travel
time.

Fig. 3. Addition new arcs to the network in second step of RGMIA-RGMArealized on network in Fig.
1
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In the second step of the algorithm seven new arcs are added tothe graph:
(1,5,39),(1,5,35),(1,6,14),(1,6,22),(1,6,29),(1,6,39). The travel timet for new
link (1,u, t) is equal to the sum of travel time from 1 to 3 travel time from 3 to u.
There are twelve links begining in node 1 in the graph now.

The basic difference between RGMA and RGMIA rests on the heuristic H which
determines conditions of the closest node choosing. We detail describe this difference
in the next section.

4. Differences between RGMA and RGMIA

To detail present differences between RGMA and RGMIA we mustdefine special
matrices used in definition ofH heuristic in both methods:

1. Q = q[i, j]i, j=1..n - minimal number of changes matrix.q[i, j] element is equal
to the number of minimal changes in route from stopi to stop j. The algorithm
which determinesQ matrix is detail presented in [8].

2. D = d[i, j]i, j=1..n - minimal number of stops matrix.d[i, j] element is equal to the
minimal number of stops in route from stopi to stop j. We can calculateD matrix
using standard Breath First Search algorithm for each variant of start stopi in the
network.

3. Trh = trh[i, j]i, j=1..n - minimal travel-time in rush hours matrix.trh[i, j] element is
equal to the minimal travel time in rush hours in route from stop i to stop j. Rush
hours are specific for a given city (from 7:00 a.m. to 10:00 a.m. and from 03:00
p.m. to 07:00 p.m. for example in Warsaw). We can obtainTrh matrix on the base
of fragment of timetables which concerned on rush hours.

4. Toh = toh[i, j]i, j=1..n - minimal travel-time outside of rush hours matrix.toh[i, j]
element is equal to the minimal travel time outside of roush hours in route from
stopi to stop j. We can determineToh matrix on the base of fragment of timetables
which concerned on hours outside rush.

In practical implementation of RGMIA it is possible to determine more than two
kinds of minimal travel-time matrix, dividing twenty-fourhours into parts, taking
into consideration an intensity of traffic - specific for a given city. It’s very important
that we can determine each of above matrix only one time - before first execution
of RGMA or RGMIA. Therefore the time-complexity of algorithms which calculate
these special matrices doesn’t have an influence on time-complexity of RGMA and
RGMIA.

Now, we can defineH heuristics for our methods:HRGMA and HRGMIA.
HRGMA(s) = u iff:
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1. {o,u, t} ∈ E andet(u) is minimal in first order and
2. value oft + D[o,u] is minimal or differs from minimal not greater thanε (ε is a

parameter of closeness too given on the input of the algorithm) in second order
and

3. Q[o,u] is minimal in third order.

HRGMIA(s) = u iff:

1. {o,u, t} ∈ E andet(u) is minimal in first order and
2. value t + Trh[o,u] is minimal or differs from minimal not greater thanε if

parametertimeo belongs to rush hours or valuet + Toh[o,u] is minimal or differs
from minimal not greater thanε if parametertimeo doesn’t belong to rush hours)
in second order and

3. Q[o,u] is minimal in third order.

Intuitively HRGMIA heuristic may be a better heuristic thenHRGMA because of
Trh andToh matrices are time-dependent and give information about lower bound of
travel time not only for first link in route but for a whole route. Matrix D used in
HRGMA is time-independent and therefore we can choose worse (thenin RGMIA)
closest node in each step of RGMA. This intuitively observation was confirmed by
experimental results on real data.

5. Experimental Results

There were a number of computer tests conducted on real data of transportation
network in Warsaw city. This network consists of about 4200 stops, connected by
about 240 bus, tram and metro lines. Values of common parameters for RGMA,
RGMIA and RGGA were following:maxt = 5,k = 3, limitw = 15. The value oflimitw
is very important because it influences the density of network. The bigger value of
limitw, the more possibilities of walk links in a network. Density of network is of a
key importance for time-complexity of algorithms. The parameter of closenessε in
RGMA and RGMIA was equal to 5 minutes. This parameter also hasan influence on
quality of results and time-complexity of these methods. The bigger value ofε, the
more possibilities of choice of closest node. We performed three kinds of tests. We
examined routes from the centre of the city to the periphery of the city (setC −P),
routes from the periphery of the city to the centre of the city(setP−C) and routes
from the periphery of the city to the periphery of the city (set P−P). Each of these
sets includes 50 specification of first (o) and last (d) stops in the route which are
difficult cases for each algorithm. First matter is a long distance fromo to d (in P−P
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set), the second is a high density of the network ino or d localization (inC−P and
P−C sets).

Selected results of tests for 10 chosen specification ofo andd for each examined
set of routes, generated by RGMIA, RGMA and RGGA, are presented in Tab. 1, 2,
3. For each of algorithm we show in these tabels:o and d specification, minimal
travel-time fork resultant routes (RGMIA-t,RGGA-t, RGMA-t), number of changes
for route with minimal travel-time (RGMIA-ch, RGGA-ch, RGMA-ch).

Table 1.The results for routes from setP−C; times = 7 : 30;o = Skolimowska 02

d-destination stop RGMIA-t RGGA-t RGMA-t RGMIA-ch RGGA-chRGMA-ch
Pl.na Rozdrȯzu 01(al. Ujazd.) 57 59 61 2 2 2
Pl.Konstytucji 04(Piękna) 62 63 71 2 2 2
GUS 08(Wawelska) 60 62 66 3 1 1
Dw. Centr.17(́Swiętokrz.) 64 66 69 2 1 1
Mennica 01(Grzybowska) 79 80 81 3 3 3
Ordynacka 02(NowýSwiat) 62 66 64 2 2 2
Siedmiogrodzka 02(Grzybowska) 78 80 82 3 3 3
Młynarska 04(Młynarska) 71 79 81 3 3 3
Nowy Świat 04(́Swiętokrzyska) 65 67 69 2 2 2
Emilii Platter(PŁN. Dw. Central) 71 73 73 3 3 3

Table 2.The results for routes from setC−P; times = 15 : 30;o = Mennica 01 (Grzybowska)

d-destination stop RGMIA-t RGGA-t RGMA-t RGMIA-ch RGGA-chRGMA-ch
Plantanowa(Młochów) 104 112 124 3 4 4
Ogodowa 01(Głosków) 82 83 97 3 3 3
Kępa Okrzewska 01 64 84 88 3 4 4
Dziechciniec-Sklep02 103 86 88 3 3 3
Wąska(Józefów) 81 81 84 2 3 3
Struga 02(Marki) 63 64 63 2 2 2
Stokrotki 02(Nieporęt) 75 78 83 3 2 2
Orzechowa 02(Łopuszańska) 35 37 44 3 3 2
Długa 02(Dawidy) 67 73 84 3 3 3
3 Maja(Legionowo) 66 68 71 3 2 3

All results presented in above tables are confirmation of good quality of routes
of RGMIA algorithm because the values of travel-time for thebest and worst route
are significantly less than for other comparable method. Generally, for P−C set, in
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Table 3.The results for routes from setP−P; times = 7 : 30;o = Struga 01(Marki)

d-destination stop RGMIA-t RGMA-t RGGA-t RGMIA-ch RGMA-ch RGGA-ch
Plantowa(Pruszków) 76 88 91 3 4 4
Ogrogowa 01(Głosków) 117 137 149 4 4 4
Kępa Okrzewska 01 103 123 138 5 5 5
Dziechciniec-Sklep 02 99 149 181 3 4 5
Mennica 01(Grzybowska) 79 80 81 3 3 3
Wąska(Józefów) 96 108 111 3 4 4
Stokrotki 02(Nieporęt) 77 84 93 0 0 4
Orzechowa 02(Łopuszańska) 75 78 81 4 5 5
Długa 02(Dawidy) 105 106 120 5 4 4
3 Maja(Legionowo) 82 87 96 3 4 4

29 cases ofo−d specification RGMIA generates the best routes, in 17 cases RGGA
was the best and only in 4 cases RGMA resultant routes were thebest. ForP−C set,
in 26 of cases ofo−d specification RGMIA generates the best routes, in 21 of cases
RGGA was the best and only in 3 cases RGMA resultant routes were the best. For
P−C set, in 27 of cases ofo− d specification RGMIA generates the best routes, in
23 of cases RGGA was the best and only in 0 cases RGMA resultantroutes were the
best.

The last experiment was focused on comparison of time complexity of algo-
rithms. The results are presented in Fig. 4.

In this experiment we tested examples of routes with a minimal number of stops,
between 22 and 47. On the horizontal axis there are points representing the minimal
number of stops on a route. These values were computed as a result of standard
BFS graph search method and they are correlated with difficulty of the route. On the
vertical axis there is marked time of execution in ms (processor Pentium 3.0 GHz).
Each possible route with a given number of the minimal numberof bus stops was
tested by two algorithms at starting time at 7:30 a.m., weekday. The executing time of
algorithms was averaged over every tested routes. We can seethat RGMIA performs
in significantly shorter time than RGMA and insignificantly than RGGA, specially
for routes with minimal number of stops greater than 35.

We can conclude on the base of our experiments that RGMIA returns results
better then RGMA and even RGGA and is significantly faster than its previous
version.
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Fig. 4. The comparison of time-complexity of RGMIA, RGMA and RGGA

6. Conclusions

The author’s motivation was to try to improve the RGMA in two aspects: the quality
of resultant routes and time-complexity[10]. Computer experiments have shown that
RGMIA - improved version of RGMA performs much more better than RGMA and
significantly faster and is unexpectedly better than RGGA inboth examined aspects.

Future work will be concentrated on testing RGMIA and RGGA onanother
transport networks for big metropolises which have different size, density and topo-
logy than network for Warsaw topology, such as Gornoslaski Okrag Przemyslowy
(Silesian Industrial Region). The transport network of this region is very special
because it consists of many big cities (hubs) connected by very rare fragment
of network. If tests show poor performance of RGMIA or/and RGGA the new
heuristics must be added to the algorithm. The proposal of improvement which can be
considered includes to the algorithm information about geographic location of start
and destination stops.
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POPRAWIONA WERSJA PEWNEGO
APROKSYMACYJNEGO ALGORYTMU

GENERUJĄCEGO OPTYMALNE TRASY W SIECI
TRANSPORTU PUBLICZNEGO

StreszczenieArtykuł zawiera opis poprawionej wersji algorytmu generującego optymalne
trasy w sieci transportu publicznego uzupełnionej o linki piesze, nazywanego przez autora
Routes Generation Matrix Improved Algorithm (RGMIA). Trasy generowane przez RGMIA
są optymalne pod względem czasu realizacji i mogą zawierać odcinki piesze, co sprawia,
że wynikoweściėzki są bardziej praktyczne i mogą spełniać okréslone preferencje u̇zytko-
wników środków transportu. Algorytm został zaimplementowany i przetestowany na danych
realnej sieci transportowej. Efektywność poprawionej metody została porównana w dwóch
aspektach: złȯzonósci czasowej i jakósci wynikowych tras, z poprzednią wersją algorytmu
nazwaną Routes Generation Matrix Algorithm (RGMA) oraz z metodą genetyczną Routes
Generation Genetic Algorithm (RGGA). Algorytmy RGMA oraz RGGA zostały opisane
w poprzednich artykułach autora [9,10].

Słowa kluczowe: siéc transportu publicznego, problem najkrótszychściėzek zmiennych
w czasie, optymalne trasy, algorytm genetyczny
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