Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of calcium carbonate-containing composite scaffolds

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Bone grafting in skeletal reconstruction has become a common task of orthopedic surgeon. Three-dimensional, porous, degradable scaffolds are often used to provide support while the new tissue can be formed in situ. There are numerous materials and techniques involved; however, each has certain drawbacks. One of the patented ceramic bone grafts is made of coral that has many benefits, e.g., its chemical and surface structure similar to that of the cancellous bone, extremely good biocompatibility and optimal pore-size. The drawback, being difficult to overcome, is the manufacturing to the desired shape. In order to maintain the advantageous chemical composition, but to overcome these difficulties, we have manufactured polymer-ceramic scaffolds both by solvent casting and by melt mixing and particulate leaching. The scaffold morphology was examined using scanning electron microscope (SEM), while the compressive properties were chosen to validate these substrates mechanically.
Opis fizyczny
Bibliogr. 6 poz., rys., wykr.
  • Polymer Competence Center, Austria
  • [1] LAURENCIN C.T., AMBROSIO A.M.A., BORDEN M.D., COOPER J.A., Tissue engineering: orthopedic applications, Annual Review of Biomedical Engineering, 1999, 1, 19–46.
  • [2] GOLDBERG V.M., Orthopedic tissue engineering: basic science and practice, Marcel Dekker Inc., New York, 2004.
  • [3] WILLIAMS D.F., Definitions in biomaterials. Progress in biomedical engineering, Elsevier Publishers, Amsterdam, 1987, Volume 4.
  • [4] LANGER R., VACANTI J.P., Tissue engineering, Science, 1993, 260, 920–926.
  • [5] MIKOS A.G., TEMENOFF J.S., Formation of highly porous biodegradable scaffolds for tissue engineering, Electronic Journal of Biotechnology, 2000, 3, 114–119.
  • [6] LI M., MONDRINOS M.J., GANDHI M.R., KO F.K., WEISS A.S., LELKES P.I., Electrospun protein fibers as matrices for tissue engineering, Biomaterials, 2005, 26, 5999–6008.
  • [7] O’BRIEN F.J., HARLEY B.A., YANNAS I.V., GIBSON L., Influence of freezing rate on pore structure in freeze-dried collagen- GAG scaffolds, Biomaterials, 2004, 25, 1077–1086.
  • [8] FILIPCZAK K., JANIK I., KOZICKI M., ULAŃSKI P., ROSIAK J.M., PAJEWSKI L.A., OLKOWSKI R., WOŹNIAK P., CHRÓŚCICKA A., LEWANDOWSKA-SZUMIEL M., Porous polymeric scaffolds for bone regeneration, E-Polymers, 2005, February.
  • [9] OLAH L., FILIPCZAK K., JAEGERMANN Z., SOSNOWSKI S., ULAŃSKI P., CZIGANY T., BORBAS L., ROSIAK J.M., Synthesis, structural and mechanical properties of porous polymeric scaffolds for bone tissue regeneration based on neat poly(ε- caprolactone) and its composites with calcium carbonate, Polymers for Advanced Technologies, 17 (11–12), 889–897.
  • [10] HOLLINGER J.O., Bone Tissue Engineering, CRC Press LLC, Boca Raton, 2004.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.