Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The biomechanical analysis of the traumatic cervical spinal cord injury using Finite Element approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
According to up-to-date knowledge only mathematical modelling of the spinal cord injury (SCI) may provide real insight into a spatial location of the fields of the spinal cord mechanical strain generated by the injury. The purpose of our research was to correlate the results of Finite Element Analysis of SCI with the patient’s neurological state and the injured spinal cord MR imaging. The 3D Finite Element Model of the cervical spinal cord and vertebral canal of a 21-year-old male patient was created. The moment of the injury was reconstructed by a simulation of the displacement of nonelastic structure to the light of vertebral canal. A detailed spatial analysis of the stress, strain and dislocation distribution was performed. The most injured region was the superficial zone of the white matter, the anterior part and central region of the grey matter, which was in good agreement with patient’s neurological staus. An individualized Finite Element Model of traumatic SCI constructed by us enabled the evaluation of the influence of mechanical strain on a neurological condition of a patient. Further research will consist in validation of the results of endurance analyses based on a enlarged group of patients.
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
  • Wrocław Medical University, Department of Neurosurgery, Wrocław
  • [1] FURLAN J.C., KRASSIOUKOV A.V., FEHLINGS M.G., The effects of gender on clinical and neurological outcomes after acute cervical spinal cord injury, J. Neurotrauma, 2005, 22, 368–381.
  • [2] JACKSON A.B., DIJKERS M., DEVIVO M.J., POCZATEK R.B., A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years, Arch. Phys. Med. Rehabil., 2004, 85, 1740–1748.
  • [3] O’CONNOR P.J., Prevalence of spinal cord injury in Australia, Spinal Cord, 2005, 43, 42–46.
  • [4] HAGG T., OUDEGA M., Degenerative and spontaneous regenerative processes after spinal cord injury, J. Neurotrauma, 2006, 23, 264–280.
  • [5] HALL R.M., OAKLAND R.J., WILCOX R.K., BARTON D.C., Spinal cord-fragment interactions following burst fracture: an in vitro model, J. Neurosurg. Spine, 2006, 5, 243–250.
  • [6] METZ G.A., CURT A., VAN DE MEENT H., KLUSMAN I., SCHWAB M.E., DIETZ V., Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury, J. Neurotrauma, 2000, 17, 1–17.
  • [7] MORIARTY L.J., DUERSTOCK B.S., BAJAJ C.L., LIN K., BORGENS R.B., Two- and three-dimensional computer graphic evaluation of the subacute spinal cord injury, J. Neurol. Sci., 1998, 155, 121–137.
  • [8] OHTA K., FUJIMURA Y., NAKAMURA M., WATANABE M., YATO Y., Experimental study on MRI evaluation of the course of cervical spinal cord injury, Spinal Cord, 1999, 37, 580–584.
  • [9] SCHWARTZ E.D., HACKNEY D.B., Diffusion-weighted MRI and the evaluation of spinal cord axonal integrity following injury and treatment, Exp. Neurol., 2003, 184, 570–589.
  • [10] Van HEDEL H.J., CURT A., Fighting for each segment: estimating the clinical value of cervical and thoracic segments in SCI, J. Neurotrauma, 2006, 23, 1621–1631.
  • [11] WILCOX R.K., BOERGER T.O., HALL R.M., BARTON D.C., LIMB D., DICKSON R.A., Measurement of canal occlusion during the thoracolumbar burst fracture process, J. Biomech., 2002, 35, 381–384.
  • [12] WILCOX R.K., BILSTON L.E., BARTON D.C., HALL R.M., Mathematical model for the viscoelastic properties of dura matter, J. Orthop. Sci., 2003, 8, 432–434.
  • [13] WILCOX R.K., BOERGER T.O., ALLEN D.J., BARTON D.C., LIMB D., DICKSON R.A., HALL R.M., A dynamic study of thoracolumbar burst fractures. J. Bone Joint. Surg. Am., 2003, 85-A, 2184–2189.
  • [14] WILCOX R.K., ALLEN D.J., HALL R.M., LIMB D., BARTON D.C., DICKSON R.A., A dynamic investigation of the burst fracture process using a combined experimental and finite element approach, Eur. Spine J., 2004, 13, 481–488.
  • [15] BOLDIN Ch., RAITH J., FANKHAUSER F., HAUNSCHMID Ch., SCHWANTZER G., SCHWEIGHOFER F., Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging, Spine, 2006, 31, 554–559.
  • [16] SHEPARD M.J., BRACKEN M.B., Magnetic resonance imaging and neurological recovery in acute spinal cord injury: observations from the National Acute Spinal Cord Injury Study 3, Spinal Cord, 1999, 37, 833–837.
  • [17] PANJABI M., WHITE A.A. 3rd, Basic biomechanics of the spine, Neurosurgery, 1980, 7, 838–842.
  • [18] PANJABI M., WHITE A.A. 3rd, Biomechanics of nonacute cervical spinal cord trauma, Spine, 1988, 13, 838–842.
  • [19] BILSTON L.E., THIBAULT L.E., The mechanical properties of the human cervical spinal cord in vitro, Ann. Biomed. Eng., 1996, 24, 67–74.
  • [20] ICHIHARA K., TAGUCHI T., SHIMADA Y., SAKURAMOTO I., KAWANO S., KAWAI S., Grey matter of bovine cervical spinal cord is mechanically more rigid and fragile than the white matter, J. Neurotrauma, 2001, 18, 361–367.
  • [21] ICHIHARA K., TAGUCHI T., SAKURAMOTO I., KAWANO S., KAWAI S., Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and grey matter, J. Neurosurg., 2003, 99, Suppl. 3, 278–285.
  • [22] ERSMARK H., LOWENHIELM P., Factors influencing the outcome of cervical spine injuries, J. Trauma, 1988, 28, 407–410.
  • [23] BONO C.M., VACCARO A.R., FISHER C., FEHLINGS M., LUDWIG S., HARROP J., GRAUER J., BROWN D., Measurement techniques for lower cervical spine injuries: Consensus statement of the spine trauma study group, Spine, 2006, 31, 603–609.
  • [24] MOORE T.A., VACCARO A.R., ANDERSON P.A., Classification of lower cervical spine injuries, Spine, 2006, 31, 537–543.
  • [25] MAZUCHOWSKI E.L., THIBAULT L.E., Biomechanical properties of the human spinal cord and pia matter, Summer Bioengineering Conference, 2003, 1205–1206.
  • [26] OZAWA H., MATSUMOTO T., OHASHI T., SATO M., KOKUBUN S., Mechanical properties and function of the spinal pia matter, J. Neurosurg. Spine, 2004, 1, 122–127.
  • [27] NICHOLAS D.S., WELLER R.O., The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study, J. Neurosurg., 1988, 69, 276–282.
  • [28] TUBBS R.S., SALTER G., GRABB P.A., OAKES W.J., The denticulate ligament: anatomy and functional significance, J. Neurosurg., 2001, 94, Suppl. 2, 271–275.
  • [29] TUNITURI A.R., Elasticity of the spinal cord, pia, and denticulate ligament in the dog, J. Neurosurg., 1978, 48, 975–979.
  • [30] KONG W.Z., GOEL V.K., GILBERTSON L.G., WEINSTEIN J.N., PARNIANPOUR M., Effects of muscle dysfunction of lumbar spine mechanics : A finite element study based on a two motion segments model, Spine, 1996, 21, 2197–2207.
  • [31] YOGANANDAN N., KUMARESAN S.C., VOO L., PINTAR F.A., LARSON S.J., Finite element modeling of the C4–C6 cervical spine unit, Med. Eng. Phys., 1996, 18, 569–574.
  • [32] ZANDER T., ROHLMANN A., BERGMANN G., Influence of ligament stiffness on the mechanical behavior of a functional spinal unit, J. Biomech., 2004, 37, 1107–1111.
  • [33] ZHANG Q.H., TEO E.C., WANNG H., LEE V.S., Finite element analysis of moment–rotation relationships for human cervical spine, J. Biomech., 2006, 39, 189–193.
  • [34] BOZKUS H., KARAKAS A., HANCI M., UZAN M., BOZDAG E., SARIOGLU A.C., Finite element model of the Jefferson fracture: comparsion with a cadaver model, Eur. Spine J., 2001, 10, 257–263.
  • [35] OZAWA H., MATSUMOTO T., OHASHI T., SATO M., KOKUBUN S., Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method, J. Neurosurg. Spine, 2001, 95, 221–224.
  • [36] TUNITURI A.R., Elasticity of the spinal cord dura in the dog, J. Neurosurg., 1977, 47, 391–396.
  • [37] JONES C.F., REED S.G., CRIPTON P.A., HALL R.M., The effect of cerebrospinal fluid on the biomechanics of spinal cord: an in vitro animal model study, J. Biomech., 2006, 39, Suppl. 1, 150.
  • [38] KALATA W., Numerical simulation of cerebrospinal fluid motion within the spinal canal, Master thesis, Chicago, University of Illinois at Chicago, 2002.
  • [39] MARTIN B.A., KALATA W., LOTH F., ROYSTON T.J., OSHINSKI J.N., Syringomyelia hydrodynamics: an in vitro study based on in vivo measurements, J. Biomech. Eng., 2005, 127, 1110–1120.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.