PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of continuum damage for application elasto-viscoplastic Bodner-Partom constitutive equations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to propose an application of the continuum damage model proposed by Lemaitre to the elasto-viscoplastic constitutive equations of the Bodner-Partom model. The proposed approach has been implemented into subroutines of the FE code MSC.Marc as the user's viscoplastic subroutine UVSCPL and has been used to perform the FE numerical simulations. Comparison is given of the following two variants: 1) uniaxial creep test results for a nickel-based B1900+Hf superalloy at high temperatures and 2) calculation based on the constitutive equations with the inclusion of isotropic damage models.
Rocznik
Strony
115--128
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Department of Structural Mechanics and Bridge Structures, Narutowicza 11/12, 80-952 Gdańsk
Bibliografia
  • 1. AMAR G., DUFAILLY J, Identification of viscoplastic and damage constitutive equations, European Journal of Mechanics, 2, 197-218, 1985.
  • 2. AMBROZIAK A., Application of elasto-viscoplastic Bodner-Partom constitutive equations in finite element analysis, Computer Assisted Mechanics and Engineering Sciences (accepted) .
  • 3. AMBROZIAK A., Identification and validation of damage parameters for elasto-viscoplastic Chaboche model, Engineering Transactions, 55, 1, 1-26, 2006.
  • 4. AMBROZIAK A., Numerical modelling of elasto-viscoplastic Chaboche constitutive equations using MSC.Marc, Task Quarterly, 2, 167-178, 2005.
  • 5. AMBROZIAK A., Viscoplastic analysis of damped vibrations of circular plate, [in:] Shell Structures: Theory and applications, W. PIETRASZKIEWICZ, C. SZYMCZAK [Eds.], Taylor and Francis Group, (Balkema - Proceedings and Monographs in Engineering, Water and Earth Sciences), 445-449, 2005.
  • 6. BODNER S.R., CHAN K.S., Modelling of continuum damage for application in elastic-viscoplastic constitutive equations, Engineering Fracture Mechanics, 25, 705-712, 1986.
  • 7. BODNER S.R., PARTOM Y., Constitutive equations for elastic-viscoplastic strain-hardening materials, Journal of Applied Mechanics, ASME, 42, 385-389, 1975.
  • 8. BODNER S.R., Review of a unified elastic-viscoplastic theory, Unified Constitutive Equations for Creep and Plasticity, K. MILLER [Ed.], Elsewier, 273-301, 1987.
  • 9. BONORA N., A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, 58, 11-28, 1997.
  • 10. CHABOCHE J.-L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity, 5, 247-302, 1989.
  • 11. CHAN K.S., BODNER S.R., LINDHOLM U.S., Phenomenological modelling of hardening and thermal recovery in metals, Journal of Engineering Material and Technology, 110, 1-8, 1988.
  • 12. CHANDRAKANTH S. and PANDEY P.C, An exponential ductile continuum damage model for metals, International Journal of Fracture, 72, 293-310, 1995.
  • 13. CHANDRAKANTH S. and PANDEY P.C, An isotropic damage model for ductile materials, Engineering Fracture Mechanics, 50, 457-465, 1995.
  • 14. CHELMINSKI, K., GWIAZDA, P., Monotonicity of operators of viscoplastic response: Application to the model of Bodner-Partom, 3, 191-208, 1999.
  • 15. DHAR S, SETHURAMAN R. and DIXIT P.M., A continuum damage mechanics model for void growth and micro-crack initiation, Engineering Fracture Mechanics, 53, 917-928, 1996.
  • 16. FRANK G.J., BROCKMAN R.A., A viscoelastic-viscoplastic constitutive model for glassy polymerst, International Journal of Solids and Structures, 38, 5149-5164, 2001.
  • 17. HAYHURST D.R., Creep rupture under multi-axial state of stress, Journal of Mechanical Physical Solids, 20, 381-390, 1972.
  • 18. KACHANOV L.M., Introduction to continuum damage mechanics, Martinus Nijhoff Publishers, Dordecht, 1986.
  • 19. Kachanov L.M., Time of rupture process under creep conditions, TVZ Akad. Nauk. S.S.R. Otd. Tech. Nauk., 8, 26-31, 1958.
  • 20. KŁOSOWSKI P., Nonlinear numerical analysis and experiments on vibrations of elasto-viscoplastic plates and shells [in Polish], Politechnika Gdańska, Gdansk 1999.
  • 21. KŁOSOWSKI P., WEICHERT D., WOŹNICA K., Dynamic of elasto-viscoplastic plates and shells, Archive of Applied Mechanics, 5, 326-345, 1995.
  • 22. KŁOSOWSKI P., WOŹNICA K., Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations, Computational Mechanics, 34, 194-212, 2004.
  • 23. KŁOSOWSKI P., WOŹNICA K., WEICHERT D., Comparison of numerical modelling and experiments for the dynamic response of circular elasto-viscoplastic plates, European Journal of Mechanics A/Solid, 19, 343-359, 2000.
  • 24. KŁOSOWSKI P., ZAGUBIEN A., WOŹNICA K., Investigation on rheological properties of technical fabric Panama, Archive of Applied Mechanics, 9-10, 661-681, 2004.
  • 25. LEMAITRE J., A continuous damage mechanics. Model for ductile fracture, Journal of Engineering Materials and Technology, 107, 83-89, 1985.
  • 26. LEMAITRE J., A course on damage mechanics, Springer-Verlag, New York 1992.
  • 27. MILLER A.K. [Ed.], Unified constitutive equations for creep and plasticity, Elsevier Applied Science, London 1987.
  • 28. PERZYNA P., Fundamental problems in viscoplasticity, Advances in Mechanics, 9, 243-377, 1966.
  • 29. RABOTNOV Y.N., Creep problems of structural members, North-Holland, Amsterdam 1969.
  • 30. SANSOUR C, KOLLMANN F.G., Large viscoplastic deformations of shells. Theory and finite formulation, Computational Mechanics, 6, 512-525, 1998.
  • 31. SANSOUR C, WAGNER W., A model of finite strain viscoplasticity based on unified constitutive equations. Theoretical and computational considerations with applications to shell, Computer Methods in Applied Mechanics and Engineering, 191, 423-450, 2001.
  • 32. SANSOUR C, WAGNER W., Viscoplasticity based on additive decomposition of logarithmic strain and unified constitutive equations. Theoretical and computational considerations with reference to shell applications, Composite Structures, 81, 1583-1594, 2003.
  • 33. STECK E.A., A stochastic model for the high-temperature plasticity of metals, International Journal of Plasticity, 1, 243-258, 1985.
  • 34. STOFFEL M., An experimental method to validate viscoplastic constitutive equations in the dynamic response of plates, Mechanics of Materials, 37, 1210-1222, 2005.
  • 35. STOFFEL M., Nichtlineare Dynamik von Flatten, der Rheinisch-Westfalischen Technischen Hochschule Aachen, Aachen, 2000.
  • 36. TAI W.H. and YANG B.X., A new microvoid-damage model for ductile fracture, Engineering Fracture Mechanics, 25, 377-384, 1986.
  • 37. Users handbook: MSC.MARC Volume B: Element library and MSC.MARC Volume D: User subroutines and special routines, Version 2003, MSC.Software Corporation 2003.
  • 38. WANG T.-J., Prediction of sheet forming limits using a new continuum damage mechanics criterion for ductile fracture, Engineering Fracture Mechanics, 51, 275-279, 1995.
  • 39. WOŹNICA K., Dynamique des structures elasto-viscoplastique, Cahiers de Mechanique, Lille, 1998.
  • 40. WOŹNICA K., KŁOSOWSKI P., Evaluation of viscoplastic parameters and its application for dynamic behaviour of plates, Archive of Applied Mechanics, 70, 561-570, 2000.
  • 41. XIAO Y.C., LI S. and GAO Z., A continuum damage mechanics model for high cycle fatigue, International Journal of Fatigue, 20, 503-508, 1998.
  • 42. ZAIRI F., WOZNICA K., NA'I'T-ABDELAZIZ M., Phenomenological nonlinear modelling of glassy polymers, Compites Rendus Mecanique, 333, 359-364, 2005.
  • 43. ŻYCZKOWSKI M., Creep damage evolution equations expressed in terms of dissipated power, International Journal of Mechanical Science, 42, 755-769, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0031-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.