PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation of a finite element model of the thoracolumbar spine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study was to generate a realistic 3D FE model of the seven level thoracolumbar spine. This research focused on the development of a robust and efficient procedure for generating anatomical 3D FE models, directly from a series of medical images, i.e., CT data. A complex model of the spine was created by combining two different modelling approaches, namely the CAD and STL-CAD methods. In addition, the entire meshing procedure for the vertebrae was significantly speeded up by combining 3D tetrahedral elements with brick elements, relative to conventional mapped mesh generation procedures. The resulting model generation method allowed for flexibility in element choice and in element type combinations. The model was subjected to various compressive loads to asses the overall behaviour of the spine. This case study was performed to illustrate the usefulness of the FE model. In the authors’ opinion, the model presented is an important tool in computational spine research as it can provide general information on spinal behaviour under various loading conditions whether healthy, diseased or damaged.
Rocznik
Strony
35--46
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • National University of Ireland, National Centre for Biomedical Engineering Science, Galway, Ireland
Bibliografia
  • [1] SHIRAZI-ADL A., PARNIANPOUR M., Computer techniques and computational methods in biomechanics, [in:] Biomechanical Systems Techniques and Applications, C. Leondes (ed.), CRC Press LLC, 2001, pp. 1–1:1–36.
  • [2] FAGAN M.J., JULIAN S., MOHSEN A.M., Finite element analysis in spine research, Journal of Engineering in Medicine, 2002, 216, (Part H), pp. 281–298.
  • [3] NABHANI F., WAKE M., Computer modelling and stress analysis of the lumbar spine, Journal of Materials Processing Technology, 2002, 127, pp. 40–47.
  • [4] LIEBSCHNER M., KOPPERDAHL D.L., ROSENBERG W.S., KEAVENY T.M., Finite element modelling of human thoracolumbar spine, Spine, 2003, 28, (6), pp. 559–565.
  • [5] POLIKEIT A., Finite element analyses of the lumbar spine: Clinical applications, [in:] Faculty of Medicine, Experimental Biomechanics, 2002, University of Bern, Bern.
  • [6] PITZEN T., GEISLER F., MATTHIS D., MULLER-STORZ H., BARBIER D., STEUDEL W.I., FELDGES A., A finite element model for predicting the biomechanical behaviour of the human lumbar spine, Control Engineering Practice, 2002, 10(1), pp. 83–90.
  • [7] NAOAILLY J., LACROIX D., PLANELL J., The mechanical significance of the lumbar spine components – a finite element stress analysis, [in:] 2003 Summer Bioengineering Conference, 2003, Sonesta Beach Resort in Key Biscayne, Florida.
  • [8] ZANDER T., ROHLMANN A., CALISSE J., BERGMANN G., Estimation of muscle forces in the lumbar spine during upperbody inclination, Clinical Biomechanics, 2001, 16 Supplement, pp. S73–S80.
  • [9] EBERLEIN R., HOLZAPFEL G.A., FROHLICH M., Multi-segment FEA of the human lumbar spine including the heterogenity of the annulus fibrosus, Computational Mechanics, 2004.
  • [10] SHIRAZI-ADL A., Biomechanic of the lumbar spine in sagittal/ lateral moments, Spine, 1994, 19, pp. 2407–2414.
  • [11] EZQUERRO F., SIMON A., PRADO M., PEREZ A., Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation, Medical Engineering and Physics, 2004, 26(1), pp. 11–22.
  • [12] SHIRAZI-ADL A., PARNIANPOUR M., Load-bearing and stress analysis of the human spine under a novel wrapping compression loading, Clinical Biomechanics, 2000, 15(10), pp. 718–725.
  • [13] PINTAR F.A., YOGANANDAN N., MYERS T.J., ELHAGEDIAB A., SANCES A., Biomechanical properties of human lumbar spine ligaments, Journal of Biomechanics, 1992, 25(11), pp. 1351–1356.
  • [14] POLIKEIT A., FERGUSON S.J., NOLTE L.P., ORR T.E., Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis, European Spine Journal, 2003, 12(4), pp. 413–420.
  • [15] TALEB-AHMED A., DUBOIS P., DUQUENOY E., Analysis methods of CT-scan images for the characterization of the bone texture: First results, Pattern Recognition Letters, 2003, 24, pp. 1971–1982.
  • [16] CANTON B., GILCHRIST M., It’s all in head, IEI, 2003, pp. 45–47.
  • [17] CAMACHO D.L.A., HOPPER R.H., LIN G.M., MYERS B.S., An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase, Journal of Biomechanics, 1997, 30(10), pp. 1067–1070.
  • [18] CARRIGAN S.D., WHITESIDE R.A., PICHORA D.R., SMALL C.F., Development of a three-dimensional finite element model for carpal load transmission in static neutral posture, Annals of Biomedical Engineering, 2003, 31, pp. 718–725.
  • [19] COUTEAU B., PAYAN Y., LAVALLEE S., The mesh-matching algorithm: an automatic 3D mesh generator for finite element structure, Journal of Biomechanics, 2000, 33(7), pp. 1005–1009.
  • [20] KEYAK J.H., MEAGHER J.M., SKINNER H.B., C.D.M. Jr., Automated three-dimensional finite element modelling of bone: a new method, Journal of Biomedical Engineering, Sept. 1990, 12, pp. 389–397.
  • [21] LENGSFELD M., SCHMITT J., ALTER P., KAMINSKY J., LEPPEK R., Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation, Medical Engineering and Physics, 1998, 20(7), pp. 515–522.
  • [22] WIRTZ D.C., PANDORF T., PORTHEINE F., RADERMACHER K., SCHIFFERS N., PRESHER A., WEICHERT D., NIETHARD F.U., Concept and development of an orthotropic FE model of the proximal femur, Journal of Biomechanics, 2003, 36, pp. 289–293.
  • [23] VICECONTI M., BELLINGERI L., CRISTOFOLINI L., TONI A., A comparative study on different methods of automatic mesh generation of human femurs, Medical Engineering and Physics, 1998, 20, pp. 1–10.
  • [24] WHITE A.A., PANJABI M., Clinical biomechanics of the spine, Philadelphia: J.B. Lippincott Company, 1990.
  • [25] POLIKEIT A., NOLTE L.P., FERGUSON S.J., Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit, Journal of Biomechanics, 2004, 37(7), pp. 1061–1069.
  • [26] GRAY H., Anatomy of the Human Body, 2000: Bartleby.com. [27] LARSEN W., Anatomy: Development, Function, Clinical Correlations, ed. Saunders, 2002, Philadelphia, Pennsylvania, Elsevier Science (USA), 741.
  • [28] AGUR A.M.R., LEE M.J., Grant’s atlas of anatomy, Philadelphia, Lippincott Williams and Wilkins, 1999.
  • [29] ABAQUS/STANDARD, ed. USER MANUAL version 6.4. Vol. II. 2003.
  • [30] CHOSA E., TOTORIBE K., TAJIMA N., A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method, Journal of Orthopaedic Research, 2004, 22(1), pp. 158–163.
  • [31] HEIDARI B., NAJARIAN S., Prediction of load sharing among lumbar spine, using finite element approach, [in:] 12th Conference of the European Society of Biomechanics, Dublin, 2000.
  • [32] FERGUSON S.J., STEFFEN T., Biomechanics of the aging spine, European Spine Journal, 2003, 12, (Suppl. 2), pp. S97–S103.
  • [33] SLOANE P.A., MCCABE J.P., A demographic analysis of traumatic spinal injury in the West of Ireland from August to October 2000, [in:] 28th Sir Peter Freyer Memorial Lecture and Surgical Symposium in Association with the Irish of Surgical Oncology, Galway, Ireland, 2003.
  • [34] HOMMINGA J., Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution, Spine, 2001, 26(14), pp. 1555–1561.
  • [35] SILVA M., KEAVENY T.M., HAYES W.C., Load sharing between the shell and centrum in the lumbar vertebral body, Spine, 1997, 22(2), pp. 140–150.
  • [36] LEE K.K., TEO E.C., Effects of laminectomy and facetectomy on the stability of the lumbar motion segment, Medical Engineering and Physics, 2004, 26(3), pp. 183–192.
  • [37] ZANDER T., ROHLMANN A., BERGMANN G., Influence of ligament stiffness on the mechanical behavior of a functional spinal unit, Journal of Biomechanics, 2004, 37(7), pp. 1107–1111.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0031-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.