Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Humans find it extremely easy to say if two words are related or if one word is more related to a given word than another one. For example, if we come across two words — "car" and "bicycle", we know they are related since both are means of transport. Also, we easily observe that "bicycle" is more related to "car" than "fork" is. In the paper we describe our approach on quantifying the semantic relatedness of concepts based on the theory of associative learning of concepts.
Rocznik
Tom
Strony
737--743
Opis fizyczny
Bibliogr. 6 poz., rys.
Bibliografia
- [1] C. Fellbaum. WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA, 1998.
- [2] D.O. Hebb. The Organization of Behavior. John Wiley, New York, USA, 1949.
- [3] R. Hecht-Nielsen. A theory of cerebral cortex. Proceedings of the International Conference on Neural Information Processing (ICONIP98), 1998.
- [4] R. Kende. Ontology Enabled Information Retrieval, Dissertation Thesis. University of Technology in Kosice, Slovakia, 2006.
- [5] G.N. Lance, W.T. Williams. A general theory of classificatory sorting strategies, 1. Hierarchical systems. Computer Journal, 9: 373-380, 1967.
- [6] V. Rockai. Mining of Concepts and Semantic Relations from Texts in Natural Language, Diploma Thesis. University of Technology in Kosice, Slovakia, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0031-0021