PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Searching for strong structural protein similarities with EAST

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exploration of protein conformation can be supported by methods of similarity searching that allow seeking the 3D patterns in a database containing many molecular structures. We developed a novel search method called EAST (Energy Alignment Search Tool), which serves as a tool for finding strong structural similarities of proteins. It differs from other algorithms that concentrate on fold similarities. We use the EAST to find protein molecules representing the same structural protein family and inspect conformational modifications in their molecular structures as an effect of biochemical reactions or environmental influences. The similarity searching is performed through the comparison and alignment of protein energy profiles. Energy profiles are received in the computational process based on the molecular mechanics theory. These profiles are stored in the special database (Energy Distribution Data Bank, EDB) and can be used later by the search engine to find similar fragments of protein structures on the energy level. In order to optimize the alignment path we use modified, energy-adapted Smith-Waterman method, which is one of the main phases of the EAST. The use of fuzzy techniques improves the fault tolerance of presented method and allows to measure the quality of the alignment. In the paper, we present the main idea of the EAST algorithm and brief discussion on its basic parameters. Finally, we give an example of the system usage regarding proteins from the RAB family that play an important role in intracellular reactions in living organisms.
Rocznik
Strony
681--693
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Silesian University of Technology, Institute of Informatics, ul. Akademicka 16, 44-100 Gliwice,
Bibliografia
  • [1] S.F. Altschul, B.W. Erickson. Locally optimal subalignments using nonlinear similarity functions. Bull. Math. Biol, 48: 633-660, 1986.
  • [2] S.F. Altschul, B.W. Erickson. Optimal sequence alignment using affine gap costs. Bull. Math. Biol, 48(5-6): 603-616, 1986.
  • [3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. Basic local alignment search tool. J. Mol. Biol, 215: 403-410, 1990.
  • [4] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, et al The protein data bank. Nucleic Acids Res., 28: 235-242, 2000.
  • [5] C. Branden, J. Tooze. Introduction to Protein Structure. Garland, 1991.
  • [6] U. Burkert, N.L. Allinger. Molecular Mechanics. American Chemical Society, Washington D.C., 1980.
  • [7] T. Can, Y.F. Wang. CTSS: A robust and efficient method for protein structure alignment based on local geometrical and biological features. Proceedings of the 2003 IEEE Bioinformatics Conference, pp. 169-179, 2003.
  • [8] C.R. Cantor, P.R. Schimmel. Biophysical Chemistry. W.H. Freeman, 1980.
  • [9] W.D. Cornell, P. Cieplak, et al A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc, 117: 5179-5197, 1995.
  • [10] T.E. Creighton. Proteins: Structures and Molecular Properties, 2nd ed. Freeman, San Francisco, 1993.
  • [11] R.E. Dickerson, I. Geis. The Structure and Action of Proteins, 2nd ed. Benjamin/Cummings, Redwood City,Calif. Concise, 1981.
  • [12] E.Z. Eisenmesser, D.A. Bosco, M. Akke, D. Kern. Enzyme dynamics during catalysis. Science, 22(5559): 1520-3, 2002.
  • [13] A. Fersht. Enzyme Structure and Mechanism, 2nd ed. W.H. Freeman, New York, 1985.
  • [14] J.F. Gibrat, T. Madej, S.H. Bryant. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol, 6(3): 377-385, 1996.
  • [15] P.J. Goodford. Computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J. Med. Chem., 28: 849-857, 1985.
  • [16] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol, 162: 705-708, 1982.
  • [17] L. Holm, C. Sander. Protein structure comparison by alignment of distance matrices. J. Mol. Biol, 233(1):123-38, 1993.
  • [18] H. Ji, H. Li, M. Flinspach, T.L. Poulos, R.B. Silverman. Computer modeling of selective regions in the active site of nitric oxide syntheses: Implication for the design of isoform-selective inhibitors. J. Med. Chem., 46: 5700-5711, 2003.
  • [19] H. Lodish, A. Berk, S.L. Zipursky, et al. Molecular Cell Biology, 4th ed. W.H. Freeman, NY, 2001.
  • [20] A.D. MacKerrell Jr., et al All-atom empirical potential for molecular modeling and dynamics studies of proteins.J. Phys. Chem. B, 102: 3586-3616, 1998.
  • [21] K. Moffat, V. Gillet, M. Whittle, G. Bravi, A. Leach. Similarity searching using molecular interaction fields. Proc. of the 7th International Conference on Chemical Structures, 2005.
  • [22] D. Mrozek, B. Małysiak, S. Kozielski. EAST: Energy Alignment Search Tool. In: L. Wang et al, eds., Proc. of the 3rd IEEE International Conference on Fuzzy Systems and Knowledge Discovery, LNCS 4223, pp. 696-705. Springer-Verlag, Xi'an, China, 2006.
  • [23] D. Mrozek, B. Małysiak, and S. Kozielski. An optimal alignment of proteins energy characteristics with crisp and fuzzy similarity awards. Proc. of the 2007 IEEE International Conference on Fuzzy Systems, London, UK, 1508-1513, 2007.
  • [24] D. Mrozek, B. Małysiak, J. Frączek, P. Kasprowski. Signal cascades analysis in nanoprocesses with distributed database system. International Conference on Computational Science (ICCS 2005), LNCS 3516/3, pp. 334-341. Springer-Verlag GmbH, Atlanta, USA, 2005.
  • [25] W.R. Pearson, D.J. Lipman. Improved tools for biological sequence analysis. PNAS, 85: 2444-2448, 1998.
  • [26] J. Ponder. TINKER - Software Tools for Molecular Design. Dept. of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, St. Louis, 2001.
  • [27] J.W. Ponder, D.A. Case. Force fields for protein simulation. Adv. Prot. Chem., 66: 27-85, 2003.
  • [28] J. Rodrigo, M. Barbany, H. Gutierrez-de-Teran, N.B. Centeno, et al. Comparison of biomolecules on the basis of molecular interaction potentials. J. Braz. Chem. Soc, 13(6): 795-799, 2002.
  • [29] R. Sayle, E.J. Milner-White. RasMol: Biomolecular graphics for all. Trends in Biochemical Sciences (TIBS), 20(9): 374, 1995.
  • [30] P.H. Sellers. Pattern recognition in genetic sequences by mismatch density. Bull. Math. Biol., 46: 510-514, 1984.
  • [31] I.N. Shindyalov, P.E. Bourne. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering, 11(9): 739-747, 1998.
  • [32] T.F. Smith, M.S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147: 195-197, 1981.
  • [33] D.A. Thorner, D.J. Wild, P. Willett, P.M. Wright. Similarity searching in files of three-dimensional chemical structures: flexible field-based searching of molecular electrostatic potentials. J. Chem. Inf. Comput. Sci., 36: 900-908, 1996.
  • [34] M.S. Waterman, M. Eggert. A new algorithm for best subsequence alignments with applications to tRNA-rRNA comparisons. J. Mol. Biol, 197: 723-728, 1987.
  • [35] G. Zhu, J. Liu, S. Terzyan, P. Zhai, G. Li, X.C. Zhang. High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. J. Biol. Chem., 278: 2452-2460, 2003.
  • [36] A.W. Znamirowski, L. Znamirowski. Two-phase simulation of nascent protein folding. Proc. of the 4th IASTED Int. Conference on Modelling, Simulation and Optimization, Kauai, Hawaii, pp. 293-298, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0031-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.