PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction of surface and internal cracks in railhead

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a two-dimensional model for the analysis of interaction between surface and internal cracks in the railheads subjected to wheel loading. The shape of the railhead, the surface crack and the internal crack are modelled as curved cracks defined by the theory of continuous distribution of dislocation in an infinite body. From the boundary conditions along these cracks, a system of singular integral equations is deduced. Influence functions in these singular integral equations are first expanded into the Cauchy kernel multiplying normal functions and later are reduced to a system of linear equations and solved numerically. Stress intensity factors (SIFs) of the surface crack tip are calculated from the numerical solution of distribution function along these cracks directly, eliminating need for any indirect integral method. The method does not require meshing and hence idealisation of the shapes of the cracks, thereby improving accuracy and reducing pre- and post processing efforts. Interaction between the internal crack and the surface crack is examined in detail through several examples.
Rocznik
Strony
79--89
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
autor
  • Central Queensland University, Centre for Railway Engineering, Rockhampton, QLD 4702, Australia
Bibliografia
  • [1] B.A. Bilby, A.H. Cottrell, K.H. Swinden. The spread of plastic yield from a notch. Proc. Royal Soc. London, Series A: Math. Phys. Sci., 272: 304-314, 1963.
  • [2] B.A. Bilby, J.D. Eshelby. Dislocations and the theory of fracture. In: H. Liebowitz, ed., Fracture, Vol. I, pp. 99-182. Academic Press, NY, 1968.
  • [3] Chen, Y.H., J.J. Han. Macrocrack-microcrack interaction in piezoelectric materials, Part I: Basic formulations and J-analysis. ASME J. Appl. Mech., 66: 514-521, 1999.
  • [4] Y.H. Chen, J.J. Han. Macrocrack-microcrack interaction in piezoelectric materials, Part II: Numerical results and discussions. ASME J. Appl Mech., 66: 522-527, 1999.
  • [5] F. Erdogan, G.D. Gupta, M. Ratwani. Interaction between a circular inclusion and an arbitrarily oriented crack. ASME J. Appl. Mech., 41: 1007-1013, 1974.
  • [6] S.X. Gong, H. Horii. General solution to the problem of microcracks near the tip of a main crack. J. Mech. Phys. Struct, 37: 27-46, 1989.
  • [7] J.J. Han, Y.H. Chen. Interface crack interacting with a microvoid in the near-tip process zone. Int. J. Fract., 102: 223-244, 2000.
  • [8] J.J. Han, M. Dhanasekar. Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation. Int. J. Solids Struct, 41: 399-411, 2004.
  • [9] H. Horii, S. Nemat-Nasser. Elastic fields of interacting inhomogeneities. Int. J. Solids Struct, 21: 731-745, 1985.
  • [10] M. Horii, S. Nemat-Nasser. Interacting micro-crack near the tips in the process zone of a macro-crack. J. Mech. Phys. Struct, 35: 601-629, 1987.
  • [11] Q.H. Qin, X. Zhang. Crack deflection at an interface between dissimilar piezoelectric materials. Int. J. Fract, 102: 355-370, 2000.
  • [12] L.G. Zhao, Y.H. Chen. On the contribution of sub interface microcracks near the tip of a macrocrack to the ./-integral in the bi-material solids. Int. J. Engrg. Sci., 35: 387-407, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0030-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.