PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved version of artificial boundary node approach

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes an improvement of the artificial boundary node approach using the least square method. The original artificial boundary node approach requires the selection of an offset by the user. The success of the original method depends on the correct choice of the offset. However, the improved version uses a least square line and the solution does not depend on a single offset. The solution is carried on using at least two different offsets and final solution is obtained by replacing the offset as zero in the least square equation. The improved version supplies good accuracy and stability in the boundary element solution. Three different case studies are solved to validate proposed method in 2-D elasticity. All results are compared with each others, conventional BEM, FEM, ANSYS and analytical results whenever possible.
Rocznik
Strony
13--23
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
  • University of Gaziantep, Mechanical Engineering Department, 27310, Gaziantep, Turkey
Bibliografia
  • [1] M.H. Aliabadi. The Boundary Element Method (Application in Solids and Structures), Vol. 2. Wiley, New York, USA, 2002.
  • [2] M.H. Aliabadi, W.S. Hall, T.G. Phemister. Taylor expansions for singular kernels in the boundary element method. Int. J. Num. Meth. Engng., 21: 2221-2236, 1985.
  • [3] D.E. Beskos. Boundary Element Methods in Mechanics, Vol. 3 in Computational Methods in Mechanics. Elsevier, New York, USA, 1987.
  • [4] M. Bonnet, M. Guiggiani. Direct evaluation of double singular integrals and new free terms in 2D (symmetric) Galerkin BEM. Comput. Methods Appl. Mech. Engng., 192: 2565-2596, 2003.
  • [5] I.H. Guzelbey, G. Tonuc. Boundary element analysis using artificial boundary node approach. Commun. Numer. Meth. Engng, 16: 769-776, 2000.
  • [6] B. Kanber, I.H. Guzelbey, A. Erklig. Boundary element analysis of contact problems using artificial boundary node approach. Acta Mechanica Sinica, 19: 347-354, 2003.
  • [7] B. Kanber, LH. Guzelbey. Yapay sinir dugiim noktasi yakla§imimn karma§ik geometrilere uygulanmasi. In: H. Demiray et al., eds., XIII. Ulusal Mekanik Kongresi, Bildiriler Kitabi, 499-507. Gaziantep, 2003.
  • [8] H.L.G. Pina. Numerical integrations and other computational techniques, In: C.A. Brebbia, ed., Boundary Element Techniques in Computer Aided Engineering, 127-139. Martinus Nijhoff, 1984.
  • [9] R.N.L. Smith. Direct Gauss quadrature formulae for logarithmic singularities on isoparametric elements. Engng. Anal. Boundary Elem., 24: 161-167, 2000.
  • [10] J.C.F. Telles. A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary integral elements. Int. J. Num. Meth. Engng., 24: 959-973, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0030-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.