PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The elements of modelling leg and monofin movements using a neural network

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to verify the diagnostic value of modelling the monofin swimming technique by means of artificial neural networks in order to optimize the technique of legs and monofin movements. The practical aspect of the modelling of the monofin swimming technique is apparent, since the interpretation of the propulsion as such is much less complicated than it is in the case of traditional swimming. Assuming that the technical level of the swimmers participating in the study is high (elimination of the redundant degree of freedom in the chain of swimmer’s body–monofin) the analysis was limited to the calf, foot and monofin movements. The model of the neural network allowed identifying the differences in the structure of the movements phases, pointing to extra margin that can be used to generate propulsion while making an upward movement and, simultaneously, paving the way to optimize the monofin swimming technique.
Słowa kluczowe
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • Department of Swimming, University School of Physical Education, Wroclaw, Poland
Bibliografia
  • [1] ARELANO R., GAVILAN P., Vortices and propulsion, [in:] Sanders R., Listen J. (Eds.), Applied Proceedings: Swimming. XVII International Symposium on Biomechanics in Sports, 1999, Perth, Edith Cowan University, 53–65.
  • [2] COLMAN V., PERSYN U., UNGERECHTS B.E., A Mass of Water Added to Swimmer’s Mass to Estimate the Velocity in Dolphin-like Swimming Below the Water Surface, [in:] Keskinen K.L., Komi P.V., Hollander A.P. (Eds.), Biomechanics and Medicine in Swimming VIII, 1999, Jyvaskyla: Gummerus Printing, 89–94.
  • [3] UNGERECHTS B.E., The Validity of Reynolds Number for Swimming Bodies which Change Form Periodically, [in:] Hollander P.A., Huijing A.P., De Grot G. (Eds.), Biomechanics and Medicine in Swimming, 1982, Champaign, Human Kinetics Publisher, 81–88.
  • [4] UNGERECHTS B.E., PERSYN U., COLMAN V., Application of Vortex Formation to Self Propulsion in Water, [in:] Keskinen K.L., Komi P.V., Hollander A.P. (Eds.), Biomechanics and Medicine in Swimming VIII, 1999, Jyvaskyla, Gummerus Printing, 95–100.
  • [5] REJMAN M., Dynamic Criteria for Description of Single Fin Swimming Technique, [in:] Keskinen K.L., Komi P.V., Hollander A.P. (Eds.), Biomechanics and Medicine in Swimming VIII, 1999, Jyvaskyla, Gummerus Printing, 171–176.
  • [6] REJMAN M., COLMAN V., PERSYN U., The method of assessment of the kinematics and dynamics of single fin movements, The Human Movements, 2003, 2 (8), 54–60.
  • [7] REJMAN M., COLMAN V., SOONS B., A preliminary study of the kinematics and dynamics of single fin movements, [in:] Chatard J.C. (Ed.), Proceedings of IX International Symposium on Biomechanics and Medicine in Swimming, 2003b, Saint-Ethienne, University of Saint-Ethienne, 511–515.
  • [8] WU YAO-TSU T., Swimming of Waving Plate, J. Fluid Mech., 1968, 10, 321–344.
  • [9] WU YAO-TSU T., Hydrodynamics of Swimming Propulsion. Part 1. Swimming of a Two-dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid, J. Fluid Mech., 1971, 46, 337–355.
  • [10] EDELMANN-NUSSER J., HOHMANN A., HANEBERG B., Prediction of the Olympic competitive performance in swimming using neural networks, [in:] Mester J., King G., Struder H., Tsolakidis E., Osterburg A. (Eds.), Annual Congress of the European College of Sport Science, Cologne, 2001, 328.
  • [11] MUJIKA I.T., BUSSO T., LACOSTE L., BARALE F., GEYSSANT A., CHATARD J.C., Modelled responses to training and taper in competitive swimmers, Med. Sci. Sports Exerc., 1986, 28, 251–258.
  • [12] MUJIKA I.T., BUSSO T., GEYSSANT A., CHATARD J.C., LACOSTE L., BARALE F., Modeling the effects of training in competitive swimming, [in:] Troup J.P., Hollander A.P., Strasse D., Trappe S.W., Cappaert J.M., Trappe T.A. (Eds.), Biomechanics and Medicine in Swimming VII, 1996, London: E F Spon, 221–228.
  • [13] BUSSO T., DENIS C., BONNEFROY R., GEYSSANT A., LACOUR J.R., Modelling of adaptations to physical training by using a recursive least squares algorhythm, J. Appl. Physiol., 1997, 82, 1685–1693.
  • [14] BISHOP C., Neural Networks for Pattern Recognition, 1995, Oxford, University Press.
  • [15] HAYKIN S., Neural Networks: A Comprehensive Foundation, 1994, New York, Macmillan Publishing.
  • [16] FAUSETT L., Fundamentals of Neural Networks, 1994, New York, Prentice-Hall.
  • [17] PATTERSON D., Artificial Neural Networks. 1996, Singapore, Prentice-Hall.
  • [18] REJMAN M., OCHMANN B., Application of Artificial Neuronal Networks in Monofin Swimming Technique Assessment, The Human Movements, 2005, 6(1), 24–33.
  • [19] DANIEL T.L., Unsteady Aspects of Aquatic Locomotion, Amer. Zool., 1984, 24, 121–134.
  • [20] Mc HENRY M., PELL C.A., LONG J.H., Mechanical Control of Swimming Speed: Stiffness and Axial Wave Form in Undulating Fish Models, J. Exp. Biology, 1995, 198, 2293–2305.
  • [21] AREALNO R., GARCIA F., GAVILAN A.A., Comparison of the Underwater Undulatory Swimming Technique in Two Different Body Positions, [in:] Keskinen K.L., Komi P.V., Hollander A.P. (Eds.), Biomechanics and Medicine in Swimming VIII, 1999b, Jyvaskyla, Gummerus Printing, 25–28.
  • [22] LIU H., WASSERSUG R.J., KAWACHI K., CFD Study of Tadpole Swimming, J. Exp. Biology, 1997, 200, 1249–1260.
  • [23] AHLBORN B., Experimental Simulation of the Thrust Phases of Fast-Start Swimming of Fish, J. Exp. Biology, 1997, 200, 2301–2312.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0028-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.