PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a hybrid finite element --- Trefftz approach for acoustic analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews a wave based prediction technique for steady-state acoustic analysis, which is being developed at the K.U. Leuven Noise and Vibration Research group. The method is a deterministic technique based on an indirect Trefftz approach. Due to its enhanced convergence rate and computational efficiency as compared to conventional element based methods, the practical frequency limitation of the technique can be shifted towards the mid-frequency range. For systems of high geometrical complexity, a hybrid coupling between wave based models and conventional finite element (FE) models is proposed in order to combine the computational efficiency of the wave based method with the high flexibility of FE with respect to geometrical complexity of the considered problem domain. The potential to comply with the mid-frequency modelling challenge through the use of the wave based technique or its hybrid variant, is illustrated for some three-dimensional acoustic validation cases.
Rocznik
Strony
427--444
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
  • K. U. Leuven, Department of Mechanical Engineering, Division PMA Celestijnenlaan 300 B, B-3001 Leuven, Belgium
Bibliografia
  • [1] P. Bouillard, F. Ihlenburg. Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications. Computer Methods in Applied Mechanics and Engineering, 176: 147-163, 1999.
  • [2] O.P. Bruno, C.A. Geuzaine, J.A. Monro, F. Reitich. Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philosophical Transactions of the Royal Society of London, Series A, 362: 629-645, 2004.
  • [3] N.S. Chandler-Wilde, S. Langdon, L. Hitter. A high-wavenumber boundary-element method for an acoustic scattering problem. Philosophical Transactions of the Royal Society of London, Series A, 362: 647-671, 2004.
  • [4] W. Desmet. A Wave Based Prediction Technique for Coupled Vibro-Acoustic Analysis. KULeuven PhD. Thesis 98D12, Leuven, 1998.
  • [5] O. von Estorff. Boundary Elements in Acoustics: Advances and Applications. WITpress, 2000.
  • [6] C. Farhat, I. Harari, U. Hetmaniuk. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency range. Computer Methods in Applied Mechanics and Engineering, 192: 1389-1419, 2003.
  • [7] M. Fischer, U. Gauger, L. Gaul. A multipole Galerkin boundary element method for acoustics. Engineering Analysis with Boundary Elements, 28: 155-162, 2004.
  • [8] R. Freymann. Advanced Numerical and Experimental Methods in the Field of Vehicle Structural-Acoustics. Hieronymus Buchreproduktions GmbH, Miinchen, 2000.
  • [9] B. van Hal. Automation and Performance Optimization of the Wave Based Method for Interior Structural-Acoustic Problems. KULeuven PhD. Thesis 04D07, Leuven, 2004.
  • [10] B. van Hal, W. Desmet, D. Vandepitte, P. Sas. A coupled finite element - wave based approach for the steady state dynamic analysis of acoustic systems. Journal of Computational Acoustics, 11(2): 255-283, 2003.
  • [11] B. van Hal, W. Desmet, D. Vandepitte, P. Sas. Hybrid finite element - wave based method for acoustic problems. i Computer Assisted Mechanics and Engineering Sciences (CAMES), 11: 375-390, 2003.
  • [12] D. Huybrechs, S. Vandewalle. A Sparse Discretisation for Integral Equation Formulations of High Frequency Scattering Problems. K.U.Leven, Technisch rapport TW-447, 2006.
  • [13] F. Ihlenburg, I. Babuska. Finite element solution to the Hehnholtz equation with high wavenumber. Part I: The h-version of the FEM. Computational Methods in Applied Mechanical Engineering, 30: 9-37, 1995.
  • [14] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences, 132: Springer, 1998.
  • [15] ,T. Jirousek, A. Wróblewski. T-elements: state-of-the-art and future trends. Archives of Computational Methods in Engineering, 3: 323-434, 1996.
  • [16] R.H. Lyon, R.G. DeJong. Theory and Application of Statistical Energy Analysis. Second Edition. Butterworth-Heinernann, Boston, 1995.
  • [17] E. Perrey-Dcbain, J. Trevelyan, P. Bettess. Wave boundary elements: a theoretical overview presenting applications in scattering of short waves. Engineering Analysis with Boundary Elements, 28: 131-141, 2004.
  • [18] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas. A Trefftz-based prediction technique for multi-domain steady-state acoustic problems. Proceedings of the Tenth International Congress on Sound and, Vibration, Stockholm, Sweden, 2003.
  • [19] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas. Feasibility study of the wave based method for high-frequency steady-state acoustic analysis. Proceedings of the International Conference on Noise and Vibration Engineering ISMA2004, Leuven, Belgium, 1555-1574, 2004.
  • [20] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas. Application of an .efficient wave based prediction technique for the analysis of vibro-acoustic radiation problems. Journal of Computational and Applied Mathematics (JCAM), 168: 353-364, 2004.
  • [21] B. Pluymers, W. Desmet, D. Vandepittc, P. Sas. On the use of a wave based prediction technique for steady-state structural-acoustic radiation analysis. Journal of Computer Modeling in Engineering & Sciences (CMES), 7(2): 173-184, 2005.
  • [22] B. Pluymers, A. Hepberger, W. Desmet, H.H. Priebsch, D. Vandepitte, P. Sas. Experimental validation of the wave based prediction technique for the analysis of the coupled vibro-acoustic behaviour of a 3D cavity. Proceedings of the Second MIT Conference on Solid and Fluid Mechanics (MIT2), Boston, Massachusetts. USA, 1483-1487, 2003.
  • [23] S. Schneider. Application of fast methods for acoustic scattering and radiation problems. Journal of Computational Acoustics, 11: 387-401, 2003.
  • [24] E. Trefftz. Bin Gegenstűck zum Ritzschen Verfahren. Proceedings of the 2nd International Congress on Applied Mechanics, Zűrich, Switzerland, 131-137, 1926.
  • [25] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method - Vol. 1: Basic formulation and linear problems (fifth edition). McGraw-Hill, London, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0025-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.