PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laminar flow in trapezoidal grooves at finite Bond numbers with shear stress at the liquid-vapor interface by the method of fundamental solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of determination of Poiseuille number for a steady gravitational flow of liquid in an inclined open trapezoidal groove is addressed. The solution comprises of two parts. First, for a given groove's dimension, liquid-solid contact angle, and the Bond number, the shape of the free surface is determined starting from the Young--Laplace equation. The shooting method is used for solution of a two-point boundary value problem. Then, having determined the shape of the free surface and slope the groove, the fully developed laminar flow is determined. The boundary value problem is solved using the method of fundamental solutions. Given the distribution of liquid velocity, the Poiseuille number, as a function of the other parameters of the model is analysed.
Rocznik
Strony
395--405
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
autor
  • Poznań University of Technology, Institute of Applied Mechanics [Politechnika Poznańska], ul. Piotrowo 3, 60-965 Poznań
Bibliografia
  • [1] P.S. Ayyaswamy, I. Catton, D. Edwards. Capillary flow in triangular grooves. J. Appl. Me.ch., 41: 332-336, 1974.
  • [2] G. Fairweather, A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 9: 69-95, 1998.
  • [3] D. Khrustalev, A. Faghri. Coupled liquid and vapor flow in miniature passages with micro grooves. ASME ,J Heat Transfer, 121: 729-733.
  • [4] J.A. Kolodziej, G. Musielak, M. Kaczmarek, T. Stręk. Determination of free surface and gravitational flow of liquid in triangular groove. Computational Mechanics, 24: 110-117, 1999.
  • [5] L. Lin, A. Faghri. Steady-state performance of a rotating miniature heat pipe. AIAA J. Thermophys. Heat Transfer, 11: 513-518, 1997.
  • [6] H. Ma, G. Peterson, X. Lu. The influence of vapor-liquid interactions on the liquid pressure drop in triangular microgrooves. Int. J. Heat Mass Transfer, 37: 2211-2219, 1994.
  • [7] G. Peterson, H. Ma. Analysis of countercurrent liquid-vapor interactions and the effect on the liquid friction factor. Exp. Thermal Fluid Sci., 12: 13-24, 1996.
  • [8] M. Scholle, N. Aksel. An exact solution of visco-capillary flow in an inclined channel. ZAMP, 52: 749-769, 2001.
  • [9] M. Scholle. N. Aksel. Thin film limit and film rupture of the visco-capillary gravity-driven channel flow. ZAMP, 54: 517-531, 2003.
  • [10] T. Stręk. Laminar Flow in a Trapezoidal Groove. International Mathematica Symposium 2005, Perth, Australia, 5-8.OS.2005, http://ftp.physics.uwa.edu.au/pub/IMS/2005/Proceedings/Proceedings/Papers/Strek/LaminarFlow.nb
  • [11] S. K. Thomas, R.C. Lykins, K.L. Yerkes. Fully developed laminar flow in trapezoidal grooves with shear stress it the liquid-vapor interface. Int. J. Heat Mass Transfer, 44: 3397-3412, 2001.
  • [12] S. . Wolfram. The Mathematica Book, 5th ed., Wolfram Media/Cambridge University Press, Champaign-Cambridge (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0025-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.